Search results
Results from the WOW.Com Content Network
The Wigner–Seitz radius, named after Eugene Wigner and Frederick Seitz, is the radius of a sphere whose volume is equal to the mean volume per atom in a solid (for first group metals). [1] In the more general case of metals having more valence electrons, r s {\displaystyle r_{\rm {s}}} is the radius of a sphere whose volume is equal to the ...
S 1: a 1-sphere is a circle of radius r; S 2: a 2-sphere is an ordinary sphere; S 3: a 3-sphere is a sphere in 4-dimensional Euclidean space. Spheres for n > 2 are sometimes called hyperspheres. The n-sphere of unit radius centered at the origin is denoted S n and is often referred to as "the" n-sphere. The ordinary sphere is a ...
Let us assume particles inside a sphere having volume , so that = /. Note that since the particles in the ideal gas are non-interacting, the probability of finding a particle at a certain distance from another particle is the same as the probability of finding a particle at the same distance from any other point; we shall use the center of the ...
Density (volumetric mass density or specific mass) is a substance's mass per unit of volume. The symbol most often used for density is ρ (the lower case Greek letter rho ), although the Latin letter D can also be used.
For the case of a sphere in a uniform far field flow, it is advantageous to use a cylindrical coordinate system (r, φ, z). The z –axis is through the centre of the sphere and aligned with the mean flow direction, while r is the radius as measured perpendicular to the z –axis. The origin is at the sphere centre.
Therefore, as the body accumulates matter at a given fixed density (in this example, 997 kg/m 3, the density of water), its Schwarzschild radius will increase more quickly than its physical radius. When a body of this density has grown to around 136 million solar masses (1.36 × 10 8 M ☉), its physical radius would be overtaken by its ...
When the smaller sphere has a radius greater than 0.41421 of the radius of the larger sphere, it is no longer possible to fit into even the octahedral holes of the close-packed structure. Thus, beyond this point, either the host structure must expand to accommodate the interstitials (which compromises the overall density), or rearrange into a ...
The formula for the volume of the -ball can be derived from this by integration. Similarly the surface area element of the -sphere of radius , which generalizes the area element of the -sphere, is given by