enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    In the long run, exponential growth of any kind will overtake linear growth of any kind (that is the basis of the Malthusian catastrophe) as well as any polynomial growth, that is, for all α: = There is a whole hierarchy of conceivable growth rates that are slower than exponential and faster than linear (in the long run).

  3. Ergodic hypothesis - Wikipedia

    en.wikipedia.org/wiki/Ergodic_hypothesis

    In physics and thermodynamics, the ergodic hypothesis [1] says that, over long periods of time, the time spent by a system in some region of the phase space of microstates with the same energy is proportional to the volume of this region, i.e., that all accessible microstates are equiprobable over a long period of time.

  4. Malthusian growth model - Wikipedia

    en.wikipedia.org/wiki/Malthusian_growth_model

    r = the population growth rate, which Ronald Fisher called the Malthusian parameter of population growth in The Genetical Theory of Natural Selection, [2] and Alfred J. Lotka called the intrinsic rate of increase, [3] [4] t = time. The model can also be written in the form of a differential equation: =

  5. Doubling time - Wikipedia

    en.wikipedia.org/wiki/Doubling_time

    For example, with an annual growth rate of 4.8% the doubling time is 14.78 years, and a doubling time of 10 years corresponds to a growth rate between 7% and 7.5% (actually about 7.18%). When applied to the constant growth in consumption of a resource, the total amount consumed in one doubling period equals the total amount consumed in all ...

  6. Deal–Grove model - Wikipedia

    en.wikipedia.org/wiki/Deal–Grove_model

    Taking the short and long time limits of the above equation reveals two main modes of operation. The first mode, where the growth is linear, occurs initially when + is small. The second mode gives a quadratic growth and occurs when the oxide thickens as the oxidation time increases.

  7. Time derivative - Wikipedia

    en.wikipedia.org/wiki/Time_derivative

    Many other fundamental quantities in science are time derivatives of one another: force is the time derivative of momentum; power is the time derivative of energy; electric current is the time derivative of electric charge; and so on. A common occurrence in physics is the time derivative of a vector, such as velocity or displacement. In dealing ...

  8. Glossary of physics - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_physics

    The time required for a quantity to fall to half its value as measured at the beginning of the time period. In physics, half-life typically refers to a property of radioactive decay, but may refer to any quantity which follows an exponential decay. Hamilton's principle Hamiltonian mechanics harmonic mean heat

  9. Chronon - Wikipedia

    en.wikipedia.org/wiki/Chronon

    For example, ordered pairs of events (A, B) and (B, C) could each be separated by slightly more than 1 Planck time: this would produce a measurement limit of 1 Planck time between A and B or B and C, but a limit of 3 Planck times between A and C. [citation needed] The chronon is a quantization of the evolution in a system along its world line.