Search results
Results from the WOW.Com Content Network
Manhattan distance, also known as Taxicab geometry, is a commonly used similarity measure in clustering techniques that work with continuous data. It is a measure of the distance between two data points in a high-dimensional space, calculated as the sum of the absolute differences between the corresponding coordinates of the two points | | + | |.
In statistics, Gower's distance between two mixed-type objects is a similarity measure that can handle different types of data within the same dataset and is particularly useful in cluster analysis or other multivariate statistical techniques. Data can be binary, ordinal, or continuous variables.
The inter-cluster distance d(i,j) between two clusters may be any number of distance measures, such as the distance between the centroids of the clusters. Similarly, the intra-cluster distance d '(k) may be measured in a variety of ways, such as the maximal distance between any pair of elements in cluster k. Since internal criterion seek ...
Using code-word lengths obtained from the page-hit counts returned by Google from the web, we obtain a semantic distance using the NCD formula and viewing Google as a compressor useful for data mining, text comprehension, classification, and translation. The associated NCD, called the normalized Google distance (NGD) can be rewritten as
The Canberra distance is a numerical measure of the distance between pairs of points in a vector space, introduced in 1966 [1] and refined in 1967 [2] by Godfrey N. Lance and William T. Williams. It is a weighted version of L ₁ (Manhattan) distance . [ 3 ]
For example, when dealing with mixed-type data that contain numerical as well as categorical descriptors, Gower's distance is a common alternative. [ citation needed ] In other words, MDS attempts to find a mapping from the M {\displaystyle M} objects into R N {\displaystyle \mathbb {R} ^{N}} such that distances are preserved.
A distance between populations can be interpreted as measuring the distance between two probability distributions and hence they are essentially measures of distances between probability measures. Where statistical distance measures relate to the differences between random variables, these may have statistical dependence, [1] and hence these ...
A common function in data mining is applying cluster analysis on a given set of data to group data based on how similar or more similar they are when compared to other groups. Distance matrices became heavily dependent and utilized in cluster analysis since similarity can be measured with a distance metric. Thus, distance matrix became the ...