enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. CUDA - Wikipedia

    en.wikipedia.org/wiki/CUDA

    CUDA works with all Nvidia GPUs from the G8x series onwards, including GeForce, Quadro and the Tesla line. CUDA is compatible with most standard operating systems. CUDA 8.0 comes with the following libraries (for compilation & runtime, in alphabetical order): cuBLAS – CUDA Basic Linear Algebra Subroutines library; CUDART – CUDA Runtime library

  3. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    Compatible with other formats Self-contained DNN Model Pre-processing and Post-processing Run-time configuration for tuning & calibration DNN model interconnect Common platform TensorFlow, Keras, Caffe, Torch: Algorithm training No No / Separate files in most formats No No No Yes ONNX: Algorithm training Yes No / Separate files in most formats ...

  4. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    PyTorch Tensors are similar to NumPy Arrays, but can also be operated on a CUDA-capable NVIDIA GPU. PyTorch has also been developing support for other GPU platforms, for example, AMD's ROCm [27] and Apple's Metal Framework. [28] PyTorch supports various sub-types of Tensors. [29]

  5. DeepSpeed - Wikipedia

    en.wikipedia.org/wiki/DeepSpeed

    The library is designed to reduce computing power and memory use and to train large distributed models with better parallelism on existing computer hardware. [2] [3] DeepSpeed is optimized for low latency, high throughput training.

  6. CuPy - Wikipedia

    en.wikipedia.org/wiki/CuPy

    CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3]

  7. ROCm - Wikipedia

    en.wikipedia.org/wiki/ROCm

    ROCm [3] is an Advanced Micro Devices (AMD) software stack for graphics processing unit (GPU) programming. ROCm spans several domains: general-purpose computing on graphics processing units (GPGPU), high performance computing (HPC), heterogeneous computing.

  8. Nvidia NVDEC - Wikipedia

    en.wikipedia.org/wiki/Nvidia_NVDEC

    Nvidia NVDEC (formerly known as NVCUVID [1]) is a feature in its graphics cards that performs video decoding, offloading this compute-intensive task from the CPU. [2] NVDEC is a successor of PureVideo and is available in Kepler and later NVIDIA GPUs.

  9. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    While the reference implementation runs on single devices, TensorFlow can run on multiple CPUs and GPUs (with optional CUDA and SYCL extensions for general-purpose computing on graphics processing units). [18] TensorFlow is available on 64-bit Linux, macOS, Windows, and mobile computing platforms including Android and iOS. [citation needed]