Search results
Results from the WOW.Com Content Network
The angle value can be specified in various angular units, such as degrees, mils, or grad. More specifically: Absolute bearing refers to the clockwise angle between the magnetic north (magnetic bearing) or true north (true bearing) and an object. For example, an object to due east would have an absolute bearing of 90 degrees.
The first two columns give the number of points and degrees clockwise from north. The third gives the equivalent bearing to the nearest degree from north or south towards east or west. The "CW" column gives the fractional-point bearings increasing in the clockwise direction and "CCW" counterclockwise. The final three columns show three common ...
In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle .
An object with an axial tilt up to 90 degrees is rotating in the same direction as its primary. An object with an axial tilt of exactly 90 degrees, has a perpendicular rotation that is neither prograde nor retrograde. An object with an axial tilt between 90 degrees and 180 degrees is rotating in the opposite direction to its orbital direction.
And these systems of the mathematics convention may measure the azimuthal angle counterclockwise (i.e., from the south direction x-axis, or 180°, towards the east direction y-axis, or +90°)—rather than measure clockwise (i.e., from the north direction x-axis, or 0°, towards the east direction y-axis, or +90°), as done in the horizontal ...
where for every direction in the base space, S n, the fiber over it in the total space, SO(n + 1), is a copy of the fiber space, SO(n), namely the rotations that keep that direction fixed. Thus we can build an n × n rotation matrix by starting with a 2 × 2 matrix, aiming its fixed axis on S 2 (the ordinary sphere in three-dimensional space ...
The azimuth is the angle formed between a reference direction (in this example north) and a line from the observer to a point of interest projected on the same plane as the reference direction orthogonal to the zenith.
A torus is an orientable surface The Möbius strip is a non-orientable surface. Note how the disk flips with every loop. The Roman surface is non-orientable.. In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "anticlockwise". [1]