Search results
Results from the WOW.Com Content Network
If the correlation between separate administrations of the test is high (e.g. 0.7 or higher as in this Cronbach's alpha-internal consistency-table [6]), then it has good test–retest reliability. The repeatability coefficient is a precision measure which represents the value below which the absolute difference between two repeated test results ...
Re-administering the same test to the same group at some later time; Correlating the first set of scores with the second; The correlation between scores on the first test and the scores on the retest is used to estimate the reliability of the test using the Pearson product-moment correlation coefficient: see also item-total correlation. 2.
Gregorc (1982c) reported test-retest correlation coefficients of .85 to .88 (measured twice with intervals ranging from 6 hours to 8 weeks) and alpha coefficients of .89 to .93 on all four scales. In this study, the Cronbach's alpha coefficients on all scales or channels ranged from .54 to .68 (CS = .64, CR = .68, AR = .58, AS = .54). This ...
An important property of the Pearson correlation is that it is invariant to application of separate linear transformations to the two variables being compared. Thus, if we are correlating X and Y, where, say, Y = 2X + 1, the Pearson correlation between X and Y is 1 — a perfect correlation. This property does not make sense for the ICC, since ...
A useful inter-rater reliability coefficient is expected (a) to be close to 0 when there is no "intrinsic" agreement and (b) to increase as the "intrinsic" agreement rate improves. Most chance-corrected agreement coefficients achieve the first objective. However, the second objective is not achieved by many known chance-corrected measures. [4]
The Spearman–Brown prediction formula, also known as the Spearman–Brown prophecy formula, is a formula relating psychometric reliability to test length and used by psychometricians to predict the reliability of a test after changing the test length. [1] The method was published independently by Spearman (1910) and Brown (1910). [2] [3]
Cohen's Kappa, Krippendorff's Alpha, Intra-Class correlation coefficients, Correlation coefficients, Kendal's concordance coefficient, etc. are useful statistical tools. (B) Test-Retest Reliability: Test-Retest Procedure is estimation of temporal consistency of the test. A test is administered twice to the same sample with a time interval.
The concordance correlation coefficient is nearly identical to some of the measures called intra-class correlations.Comparisons of the concordance correlation coefficient with an "ordinary" intraclass correlation on different data sets found only small differences between the two correlations, in one case on the third decimal. [2]