Search results
Results from the WOW.Com Content Network
When not specified, the luminous efficiency function generally refers to the photopic luminous efficiency function. The CIE photopic luminous efficiency function y (λ) or V(λ) is a standard function established by the Commission Internationale de l'Éclairage (CIE) and standardized in collaboration with the ISO, [1] and may be used to convert ...
A comparison between a typical normalized M cone's spectral sensitivity and the CIE 1931 luminosity function for a standard observer in photopic vision. In the CIE 1931 model, Y is the luminance, Z is quasi-equal to blue (of CIE RGB), and X is a mix of the three CIE RGB curves chosen to be nonnegative (see § Definition of the CIE XYZ color space).
The eye has different responses as a function of wavelength when it is adapted to light conditions (photopic vision) and dark conditions (scotopic vision). Photometry is typically based on the eye's photopic response, and so photometric measurements may not accurately indicate the perceived brightness of sources in dim lighting conditions where ...
For low light levels, the response of the human eye changes, and the scotopic curve applies. The photopic curve is the CIE standard curve used in the CIE 1931 color space. The luminous flux (or visible power) in a light source is defined by the photopic luminosity function. The following equation calculates the total luminous flux in a source ...
Photopic vision is the vision of the eye under well-lit conditions (luminance levels from 10 to 10 8 cd/m 2). In humans and many other animals, photopic vision allows color perception , mediated by cone cells , and a significantly higher visual acuity and temporal resolution than available with scotopic vision .
The luminous flux accounts for the sensitivity of the eye by weighting the power at each wavelength with the luminosity function, which represents the eye's response to different wavelengths. The luminous flux is a weighted sum of the power at all wavelengths in the visible band. Light outside the visible band does not contribute.
Starting with the SPD, let us verify that the CRI of reference illuminant F4 is 51. The first step is to determine the tristimulus values using the 1931 standard observer. Calculation of the inner product of the SPD with the standard observer's color matching functions (CMFs) yields (X, Y, Z) = (109.2, 100.0, 38.9) (after normalizing for Y = 100).
In photometry, luminous intensity is a measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle, based on the luminosity function, a standardized model of the sensitivity of the human eye. The SI unit of luminous intensity is the candela (cd), an SI base unit.