enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    The square root of a nonnegative number is used in the definition of Euclidean norm (and distance), as well as in generalizations such as Hilbert spaces. It defines an important concept of standard deviation used in probability theory and statistics. It has a major use in the formula for solutions of a quadratic equation.

  3. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    The other roots of the equation are obtained either by changing of cube root or, equivalently, by multiplying the cube root by a primitive cube root of unity, that is . This formula for the roots is always correct except when p = q = 0 , with the proviso that if p = 0 , the square root is chosen so that C ≠ 0 .

  4. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  5. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.

  6. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    Simple roots are Lipschitz continuous with respect to coefficients but multiple roots are not. In other words, simple roots have bounded sensitivities but multiple roots are infinitely sensitive if the coefficients are perturbed arbitrarily. As a result, most root-finding algorithms suffer substantial loss of accuracy on multiple roots in ...

  7. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    By contrast, in this case, the more common formula has a division by zero for one root and an indeterminate form 0/0 for the other root. On the other hand, when c = 0, the more common formula yields two correct roots whereas this form yields the zero root and an indeterminate form 0/0.

  8. Root system - Wikipedia

    en.wikipedia.org/wiki/Root_system

    Any simple root and its reflection perpendicular to another simple root differ by a multiple of 0 or 1 of the second root, not by any greater multiple. The D n root lattice – that is, the lattice generated by the D n roots – consists of all integer vectors whose components sum to an even integer. This is the same as the C n root lattice.

  9. E8 (mathematics) - Wikipedia

    en.wikipedia.org/wiki/E8_(mathematics)

    A set of simple roots for a root system Φ is a set of roots that form a basis for the Euclidean space spanned by Φ with the special property that each root has components with respect to this basis that are either all nonnegative or all nonpositive. Given the E 8 Cartan matrix (above) and a Dynkin diagram node ordering of: One choice of ...