Search results
Results from the WOW.Com Content Network
Fog is a visible aerosol consisting of tiny water droplets or ice crystals suspended in the air at or near the Earth's surface. [1] [2] Fog can be considered a type of low-lying cloud usually resembling stratus and is heavily influenced by nearby bodies of water, topography, and wind conditions.
With sufficient humidity in the cooler layer, fog is typically present below the inversion cap. An inversion is also produced whenever radiation from the surface of the earth exceeds the amount of radiation received from the sun, which commonly occurs at night, or during the winter when the sun is very low in the sky.
Cloud condensation nuclei are necessary for cloud droplets formation because of the Kelvin effect, which describes the change in saturation vapor pressure due to a curved surface. At small radii, the amount of supersaturation needed for condensation to occur is so large, that it does not happen naturally.
Fog is commonly considered a surface-based cloud layer. [21] The fog may form at surface level in clear air or it may be the result of a very low stratus cloud subsiding to ground or sea level. Conversely, low stratiform clouds result when advection fog is lifted above surface level during breezy conditions.
You may have woken up to steamy windows or noticed fog hanging over downtown Kansas City in the morning. This is caused by the air temperature lowering just enough overnight to meet the high dew ...
Thus, any energy that enters a system but does not leave must be retained within the system. So, the amount of energy retained on Earth (in Earth's climate system) is governed by an equation: [change in Earth's energy] = [energy arriving] − [energy leaving]. Energy arrives in the form of absorbed solar radiation (ASR). Energy leaves as ...
Climate experts warn San Francisco's iconic fog is disappearing... and fast. U.C. Berkeley professor explains why this is happening and what can be done to stop it.
Fog can also occur preceding a warm frontal passage. Clearing and warming is usually rapid after frontal passage. Clearing and warming is usually rapid after frontal passage. If the warm air mass is unstable, thunderstorms may be embedded among the stratiform clouds ahead of the front, and after frontal passage thundershowers may still continue.