enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Overfitting - Wikipedia

    en.wikipedia.org/wiki/Overfitting

    Underfitting is the inverse of overfitting, meaning that the statistical model or machine learning algorithm is too simplistic to accurately capture the patterns in the data. A sign of underfitting is that there is a high bias and low variance detected in the current model or algorithm used (the inverse of overfitting: low bias and high variance).

  3. Occam's razor - Wikipedia

    en.wikipedia.org/wiki/Occam's_razor

    The bias–variance tradeoff is a framework that incorporates the Occam's razor principle in its balance between overfitting (associated with lower bias but higher variance) and underfitting (associated with lower variance but higher bias). [38]

  4. Learning curve (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Learning_curve_(machine...

    and diagnosing problems such as overfitting (or underfitting). Learning curves can also be tools for determining how much a model benefits from adding more training ...

  5. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    Techniques like early stopping, L1 and L2 regularization, and dropout are designed to prevent overfitting and underfitting, thereby enhancing the model's ability to adapt to and perform well with new data, thus improving model generalization. [4]

  6. Bias–variance tradeoff - Wikipedia

    en.wikipedia.org/wiki/Bias–variance_tradeoff

    High-variance learning methods may be able to represent their training set well but are at risk of overfitting to noisy or unrepresentative training data. In contrast, algorithms with high bias typically produce simpler models that may fail to capture important regularities (i.e. underfit) in the data.

  7. Elbow method (clustering) - Wikipedia

    en.wikipedia.org/wiki/Elbow_method_(clustering)

    Explained variance. The "elbow" is indicated by the red circle. The number of clusters chosen should therefore be 4. In cluster analysis, the elbow method is a heuristic used in determining the number of clusters in a data set.

  8. Akaike information criterion - Wikipedia

    en.wikipedia.org/wiki/Akaike_information_criterion

    In other words, AIC deals with both the risk of overfitting and the risk of underfitting. The Akaike information criterion is named after the Japanese statistician Hirotugu Akaike, who formulated it. It now forms the basis of a paradigm for the foundations of statistics and is also widely used for statistical inference.

  9. Multidimensional scaling - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_scaling

    Interpretability of the MDS solution is often important, and lower dimensional solutions will typically be easier to interpret and visualize. However, dimension selection is also an issue of balancing underfitting and overfitting. Lower dimensional solutions may underfit by leaving out important dimensions of the dissimilarity data.