enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    Dijkstra's algorithm finds the shortest path from a given source node to every other node. [7]: 196–206 It can be used to find the shortest path to a specific destination node, by terminating the algorithm after determining the shortest path to the destination node. For example, if the nodes of the graph represent cities, and the costs of ...

  3. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Shortest path (A, C, E, D, F) between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.

  4. Pathfinding - Wikipedia

    en.wikipedia.org/wiki/Pathfinding

    Equivalent paths between A and B in a 2D environment. Pathfinding or pathing is the search, by a computer application, for the shortest route between two points. It is a more practical variant on solving mazes. This field of research is based heavily on Dijkstra's algorithm for finding the shortest path on a weighted graph.

  5. Distance (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Distance_(graph_theory)

    The weighted shortest-path distance generalises the geodesic distance to weighted graphs. In this case it is assumed that the weight of an edge represents its length or, for complex networks the cost of the interaction, and the weighted shortest-path distance d W ( u , v ) is the minimum sum of weights across all the paths connecting u and v .

  6. Contraction hierarchies - Wikipedia

    en.wikipedia.org/wiki/Contraction_hierarchies

    The shortest path in a graph can be computed using Dijkstra's algorithm but, given that road networks consist of tens of millions of vertices, this is impractical. [1] Contraction hierarchies is a speed-up method optimized to exploit properties of graphs representing road networks. [2] The speed-up is achieved by creating shortcuts in a ...

  7. Johnson's algorithm - Wikipedia

    en.wikipedia.org/wiki/Johnson's_algorithm

    The first three stages of Johnson's algorithm are depicted in the illustration below. The graph on the left of the illustration has two negative edges, but no negative cycles. The center graph shows the new vertex q, a shortest path tree as computed by the Bellman–Ford algorithm with q as starting vertex, and the values h(v) computed at each other node as the length of the shortest path from ...

  8. Euclidean shortest path - Wikipedia

    en.wikipedia.org/wiki/Euclidean_shortest_path

    There are many results on computing shortest paths which stays on a polyhedral surface. Given two points s and t, say on the surface of a convex polyhedron, the problem is to compute a shortest path that never leaves the surface and connects s with t. This is a generalization of the problem from 2-dimension but it is much easier than the 3 ...

  9. Suurballe's algorithm - Wikipedia

    en.wikipedia.org/wiki/Suurballe's_algorithm

    Therefore, the shortest two disjoint paths under the modified weights are the same paths as the shortest two paths in the original graph, although they have different weights. Suurballe's algorithm may be seen as a special case of the successive shortest paths method for finding a minimum cost flow with total flow amount two from s to t. The ...