enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Torsion of a curve - Wikipedia

    en.wikipedia.org/wiki/Torsion_of_a_curve

    Let r = r(t) be the parametric equation of a space curve. Assume that this is a regular parametrization and that the curvature of the curve does not vanish. Analytically, r(t) is a three times differentiable function of t with values in R 3 and the vectors ′ (), ″ are linearly independent.

  3. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    The normal curvature, k n, is the curvature of the curve projected onto the plane containing the curve's tangent T and the surface normal u; the geodesic curvature, k g, is the curvature of the curve projected onto the surface's tangent plane; and the geodesic torsion (or relative torsion), τ r, measures the rate of change of the surface ...

  4. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    When a line of curvature has a local extremum of the same principal curvature then the curve has a ridge point. These ridge points form curves on the surface called ridges. The ridge curves pass through the umbilics. For the star pattern either 3 or 1 ridge line pass through the umbilic, for the monstar and lemon only one ridge passes through. [3]

  5. Gaussian curvature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_curvature

    They measure how the surface bends by different amounts in different directions from that point. We represent the surface by the implicit function theorem as the graph of a function, f, of two variables, in such a way that the point p is a critical point, that is, the gradient of f vanishes (this can always be attained by a suitable rigid motion).

  6. Curve fitting - Wikipedia

    en.wikipedia.org/wiki/Curve_fitting

    Polynomial curves fitting points generated with a sine function. The black dotted line is the "true" data, the red line is a first degree polynomial, the green line is second degree, the orange line is third degree and the blue line is fourth degree. The first degree polynomial equation = + is a line with slope a. A line will connect any two ...

  7. Sectional curvature - Wikipedia

    en.wikipedia.org/wiki/Sectional_curvature

    Alternatively, the sectional curvature can be characterized by the circumference of small circles. Let be a two-dimensional plane in .Let () for sufficiently small > denote the image under the exponential map at of the unit circle in , and let () denote the length of ().

  8. First fundamental form - Wikipedia

    en.wikipedia.org/wiki/First_fundamental_form

    Thus, it enables one to calculate the lengths of curves on the surface and the areas of regions on the surface. The line element ds may be expressed in terms of the coefficients of the first fundamental form as d s 2 = E d u 2 + 2 F d u d v + G d v 2 . {\displaystyle ds^{2}=E\,du^{2}+2F\,du\,dv+G\,dv^{2}\,.}

  9. Parametric surface - Wikipedia

    en.wikipedia.org/wiki/Parametric_surface

    The Gaussian curvature K = κ 1 κ 2 and the mean curvature H = (κ 1 + κ 2)/2 can be computed as follows: =, = + (). Up to a sign, these quantities are independent of the parametrization used, and hence form important tools for analysing the geometry of the surface.