enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eukaryotic DNA replication - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_DNA_replication

    Loading of Mcm proteins can only occur during the G 1 of the cell cycle, and the loaded complex is then activated during S phase by recruitment of the Cdc45 protein and the GINS complex to form the active Cdc45–Mcm–GINS (CMG) helicase at DNA replication forks. [62] [108] Mcm activity is required throughout the S phase for DNA replication.

  3. Helicase - Wikipedia

    en.wikipedia.org/wiki/Helicase

    DNA helicases are frequently attracted to regions of DNA damage and are essential for cellular DNA replication, recombination, repair, and transcription. Chemical manipulation of their molecular processes can change the rate at which cancer cells divide, as well as, the efficiency of transactions and cellular homeostasis.

  4. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    Within eukaryotes, DNA replication is controlled within the context of the cell cycle. As the cell grows and divides, it progresses through stages in the cell cycle; DNA replication takes place during the S phase (synthesis phase). The progress of the eukaryotic cell through the cycle is controlled by cell cycle checkpoints.

  5. MCM4 - Wikipedia

    en.wikipedia.org/wiki/MCM4

    The hexameric protein complex formed by MCM proteins is a key component of the pre-replication complex (pre-RC) and may be involved in the formation of replication forks and in the recruitment of other DNA replication related proteins. The MCM complex consisting of this protein and MCM2, 6 and 7 proteins possesses DNA helicase activity, and may ...

  6. Origin recognition complex - Wikipedia

    en.wikipedia.org/wiki/Origin_Recognition_Complex

    When Mcm2-7 is first loaded it completely encircles the DNA and helicase activity is inhibited. In S phase, the Mcm2-7 complex interacts with helicase cofactors Cdc45 and GINS to isolate a single DNA strand, unwind the origin, and begin replication down the chromosome. In order to have bidirectional replication, this process happens twice at an ...

  7. Molecular Structure of Nucleic Acids: A Structure for ...

    en.wikipedia.org/wiki/Molecular_Structure_of...

    DNA replication. The two base-pair complementary chains of the DNA molecule allow replication of the genetic instructions. The "specific pairing" is a key feature of the Watson and Crick model of DNA, the pairing of nucleotide subunits. [5] In DNA, the amount of guanine is equal to cytosine and the amount of adenine is equal to thymine. The A:T ...

  8. Minichromosome maintenance - Wikipedia

    en.wikipedia.org/wiki/Minichromosome_Maintenance

    The minichromosome maintenance protein complex (MCM) is a DNA helicase essential for genomic DNA replication. Eukaryotic MCM consists of six gene products, Mcm2–7, which form a heterohexamer. [1] [2] As a critical protein for cell division, MCM is also the target of various checkpoint pathways, such as the S-phase entry and S-phase arrest ...

  9. Okazaki fragments - Wikipedia

    en.wikipedia.org/wiki/Okazaki_fragments

    During DNA replication, the double helix is unwound and the complementary strands are separated by the enzyme DNA helicase, creating what is known as the DNA replication fork. Following this fork, DNA primase and DNA polymerase begin to act in order to create a new complementary strand.