Search results
Results from the WOW.Com Content Network
Taking = for some unknown function in Newton divided difference formulas, if the representation of x in the previous sections was instead taken to be = +, in terms of forward differences, the Newton forward interpolation formula is expressed as: () = (+) = = () whereas for the same in terms of backward differences, the Newton backward ...
In mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. [citation needed] Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation. [1] Divided differences is a recursive division process.
One method is to write the interpolation polynomial in the Newton form (i.e. using Newton basis) and use the method of divided differences to construct the coefficients, e.g. Neville's algorithm. The cost is O(n 2) operations.
In mathematics, Neville's algorithm is an algorithm used for polynomial interpolation that was derived by the mathematician Eric Harold Neville in 1934. Given n + 1 points, there is a unique polynomial of degree ≤ n which goes through the given points. Neville's algorithm evaluates this polynomial.
In mathematics, in the area of complex analysis, the general difference polynomials are a polynomial sequence, a certain subclass of the Sheffer polynomials, which include the Newton polynomials, Selberg's polynomials, and the Stirling interpolation polynomials as special cases.
This expression is Newton's difference quotient (also known as a first-order divided difference). The slope of this secant line differs from the slope of the tangent line by an amount that is approximately proportional to h. As h approaches zero, the slope of the secant line approaches the slope of the tangent line.
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
Finite differences are composed from differences in a sequence of values, or the values of a function sampled at discrete points. Finite differences are used both in interpolation and numerical analysis, and also play an important role in combinatorics and analytic number theory. The prototypical finite difference equation is the Newton series.