Search results
Results from the WOW.Com Content Network
Using liquid methane and liquid oxygen as propellants is sometimes called methalox propulsion. [19] Liquid methane has a lower specific impulse than liquid hydrogen, but is easier to store due to its higher boiling point and density, as well as its lack of hydrogen embrittlement. It also leaves less residue in the engines compared to kerosene ...
Helmuth Walter was a German engineer an early pioneer of monopropellant rockets using hydrogen peroxide as fuel. [9] Although his initial work was on submarine propulsion the same jets of oxygen produced by for combustion in gas turbines could be directed through a nozzle to generate thrust. [ 9 ]
Solar thermal rockets and nuclear thermal rockets typically propose to use liquid hydrogen for a specific impulse of around 600–900 seconds, or in some cases water that is exhausted as steam for a specific impulse of about 190 seconds. Nuclear thermal rockets use the heat of nuclear fission to add energy to the propellant. Some designs ...
Bipropellant liquid rockets use a liquid fuel such as liquid hydrogen or RP-1, and a liquid oxidizer such as liquid oxygen. The engine may be a cryogenic rocket engine , where the fuel and oxidizer, such as hydrogen and oxygen, are gases which have been liquefied at very low temperatures.
Hydrogen peroxide works best as a propellant in extremely high concentrations (roughly over 70%). Although any concentration of peroxide will generate some hot gas (oxygen plus some steam), at concentrations above approximately 67%, the heat of decomposing hydrogen peroxide becomes large enough to completely vaporize all the liquid at standard pressure.
Hydrogen peroxide [9] has been used as a power source for propellant tank pumps in rockets like the German WWII V-2 and the American Redstone. [10] The hydrogen peroxide is passed through a platinum catalyst mesh, [ 9 ] or comes in contact with manganese dioxide impregnated ceramic beads, or Z-Stoff permanganate solution is co-injected, which ...
Their system typically used jettisonable, self-contained Walter HWK 109-500 Starthilfe ("takeoff-help"), also known as "Rauchgerät" – smoke generator, unitized liquid-fuel monopropellant rocket booster units whose engines driven by chemical decomposition of "T-Stoff", essentially almost pure hydrogen peroxide, with a Z-Stoff catalytic compound.
The main engine is a Polish construction which uses highly concentrated hydrogen peroxide as oxidiser. High test peroxide is produced in-house by the Institute of Aviation and has a concentration of 98%, offering increased specific impulse and density in comparison with the more commonly used 85-87.5% peroxide. [1] AMBER has a reusable head.