Search results
Results from the WOW.Com Content Network
Bipropellant liquid rockets use a liquid fuel such as liquid hydrogen or RP-1, and a liquid oxidizer such as liquid oxygen. The engine may be a cryogenic rocket engine , where the fuel and oxidizer, such as hydrogen and oxygen, are gases which have been liquefied at very low temperatures.
The major manufacturer of German rocket engines for military use, the HWK firm, [8] manufactured the RLM-numbered 109-500-designation series of rocket engine systems, and either used hydrogen peroxide as a monopropellant for Starthilfe rocket-propulsive assisted takeoff needs; [9] or as a form of thrust for MCLOS-guided air-sea glide bombs; [10 ...
Solar thermal rockets and nuclear thermal rockets typically propose to use liquid hydrogen for a specific impulse of around 600–900 seconds, or in some cases water that is exhausted as steam for a specific impulse of about 190 seconds. Nuclear thermal rockets use the heat of nuclear fission to add energy to the propellant. Some designs ...
RP-1 (Rocket Propellant-1 or Refined Petroleum-1) and similar fuels like RG-1 and T-1 are highly refined kerosene formulations used as rocket fuel. Liquid-fueled rockets that use RP-1 as fuel are known as kerolox rockets. In their engines, RP-1 is atomized, mixed with liquid oxygen (LOX), and ignited to produce thrust.
These cryogenic temperatures vary depending on the propellant, with liquid oxygen existing below −183 °C (−297.4 °F; 90.1 K) and liquid hydrogen below −253 °C (−423.4 °F; 20.1 K). Since one or more of the propellants is in the liquid phase, all cryogenic rocket engines are by definition liquid-propellant rocket engines. [2]
Europe's new Ariane 6 rocket ditched the helium of its predecessor Ariane 5 for a novel pressurization system that converts a small portion of its primary liquid oxygen and hydrogen propellants to ...
Chemical rockets use the most readily available propellant, which is waste products from the chemical reactions producing their heat energy. Most liquid-fueled chemical rockets use either hydrogen or hydrocarbon combustion, and the propellant is therefore mainly water (molecular mass 18) and carbon dioxide (molecular mass 44).
The M-1 traces its history to US Air Force studies from the late 1950s for its launch needs in the 1960s. By 1961 these had evolved into the Space Launcher System design. . The SLS consisted of a series of four rocket designs, all built around a series of solid-fuel boosters and liquid-hydrogen-powered upper stag