enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    In digital signal processing, convolution is used to map the impulse response of a real room on a digital audio signal. In electronic music convolution is the imposition of a spectral or rhythmic structure on a sound. Often this envelope or structure is taken from another sound.

  3. Overlap–save method - Wikipedia

    en.wikipedia.org/wiki/Overlap–save_method

    where:. DFT N and IDFT N refer to the Discrete Fourier transform and its inverse, evaluated over N discrete points, and; L is customarily chosen such that N = L+M-1 is an integer power-of-2, and the transforms are implemented with the FFT algorithm, for efficiency.

  4. Overlap–add method - Wikipedia

    en.wikipedia.org/wiki/Overlap–add_method

    The following is a pseudocode of the algorithm: (Overlap-add algorithm for linear convolution) h = FIR_filter M = length(h) Nx = length(x) N = 8 × 2^ceiling( log2(M) ) (8 times the smallest power of two bigger than filter length M.

  5. Circular convolution - Wikipedia

    en.wikipedia.org/wiki/Circular_convolution

    Circular convolution, also known as cyclic convolution, is a special case of periodic convolution, which is the convolution of two periodic functions that have the same period. Periodic convolution arises, for example, in the context of the discrete-time Fourier transform (DTFT). In particular, the DTFT of the product of two discrete sequences ...

  6. Zero-order hold - Wikipedia

    en.wikipedia.org/wiki/Zero-order_hold

    The zero-order hold (ZOH) is a mathematical model of the practical signal reconstruction done by a conventional digital-to-analog converter (DAC). [1] That is, it describes the effect of converting a discrete-time signal to a continuous-time signal by holding each sample value for one sample interval. It has several applications in electrical ...

  7. Convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Convolution_theorem

    In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain).

  8. Coding theory - Wikipedia

    en.wikipedia.org/wiki/Coding_theory

    This is like convolution used in LTI systems to find the output of a system, when you know the input and impulse response. So we generally find the output of the system convolutional encoder, which is the convolution of the input bit, against the states of the convolution encoder, registers.

  9. Convolutional code - Wikipedia

    en.wikipedia.org/wiki/Convolutional_code

    Convolutional code with any code rate can be designed based on polynomial selection; [15] however, in practice, a puncturing procedure is often used to achieve the required code rate. Puncturing is a technique used to make a m/n rate code from a "basic" low-rate (e.g., 1/n) code. It is achieved by deleting of some bits in the encoder output.