Search results
Results from the WOW.Com Content Network
82 Rb also has an advantage in that it has a very short half-life which results in much lower radiation exposure for the patient. This is especially important as the use of myocardial imaging increases in the medical field. When it comes to patients, 82 Rb is beneficial to use when the patient is obese or physically unable to perform a stress ...
Other than 87 Rb, the longest-lived radioisotopes are 83 Rb with a half-life of 86.2 days, 84 Rb with a half-life of 33.1 days, and 86 Rb with a half-life of 18.642 days. All other radioisotopes have half-lives less than a day. 82 Rb is used in some cardiac positron emission tomography scans to assess myocardial perfusion. It has a half-life of
Rubidium-82 chloride is a form of rubidium chloride containing a radioactive isotope of rubidium. ... The half-life of rubidium-82 is only 1.27 minutes; ...
Rubidium-82, one of the element's non-natural isotopes, is produced by electron-capture decay of strontium-82 with a half-life of 25.36 days. With a half-life of 76 seconds, rubidium-82 decays by positron emission to stable krypton-82 .
Radioactive isotope table "lists ALL radioactive nuclei with a half-life greater than 1000 years", incorporated in the list above. The NUBASE2020 evaluation of nuclear physics properties F.G. Kondev et al. 2021 Chinese Phys. C 45 030001. The PDF of this article lists the half-lives of all known radioactives nuclides.
Rubidium-82 is produced from the decay of Strontium-82 through electron capture in a generator. It is used to access the blood vessels supplying the heart. Strontium-82 has a half-life of 25.5 days while Rubidium-82 has a half-life of 76 seconds. Heart muscles can take up Rubidium-82 efficiently through sodium–potassium pump.
Of the first 82 elements in the periodic table, ... This is the longest half-life directly measured for any unstable isotope ... rubidium: 1: 1: 85 Rb: 87 Rb: 49 ...
Rubidium-87 has such a long half life as to be essentially stable (longer than the age of the Earth). Rubidium-86 quickly decays to stable Strontium-86 if produced either directly, via (n,2n) reactions in Rubidium-87 or via neutron capture in Rubidium-85.