Search results
Results from the WOW.Com Content Network
Rubidium (37 Rb) has 36 isotopes, with naturally occurring rubidium being composed of just two isotopes; 85 Rb (72.2%) and the radioactive 87 Rb (27.8%). 87 Rb has a half-life of 4.92 × 10 10 years. It readily substitutes for potassium in minerals, and is therefore fairly widespread.
Radioactive isotope table "lists ALL radioactive nuclei with a half-life greater than 1000 years", incorporated in the list above. The NUBASE2020 evaluation of nuclear physics properties F.G. Kondev et al. 2021 Chinese Phys. C 45 030001. The PDF of this article lists the half-lives of all known radioactives nuclides.
The single-row parameters, commented "!"=could be required; ..1 – 4 refer to the decay mode dm#= {{Isotopes/main/isotope | mn =! massnumber | sym =! symbol | link = isotope page: uranium-232 | ref = reference for the isotope-row | na =! natural abundancy (can be: synth, trace) | hl =! half-life (can be: stable) | dm1 =! decay mode #1 ...
Isotopes of rubidium. Main isotopes [8] Decay; abundance half-life (t 1/2) mode ... will read the table live from {{Infobox uranium isotopes}}.
Rubidium is the first alkali metal in the group to have a density higher than water. On Earth, natural rubidium comprises two isotopes: 72% is a stable isotope 85 Rb, and 28% is slightly radioactive 87 Rb, with a half-life of 48.8 billion years – more than three times as long as the estimated age of the universe.
The rubidium–strontium dating method (Rb–Sr) is a radiometric dating technique, used by scientists to determine the age of rocks and minerals from their content of specific isotopes of rubidium (87 Rb) and strontium (87 Sr, 86 Sr). One of the two naturally occurring isotopes of rubidium, 87 Rb, decays to 87 Sr with a half-life of 49.
Lizzo's name has been dropped from a harassment lawsuit that rocked the singer's reputation last year when it alleged a hostile work environment on her 2023 European tour, according to reports.. A ...
A further 10 nuclides, platinum-190, samarium-147, lanthanum-138, rubidium-87, rhenium-187, lutetium-176, thorium-232, uranium-238, potassium-40, and uranium-235 have half-lives between 7.0 × 10 8 and 4.83 × 10 11 years, which means they have experienced at least 0.5% depletion since the formation of the Solar System about 4.6 × 10 9 years ...