Search results
Results from the WOW.Com Content Network
The three eigenvectors are ordered ,, by their eigenvalues ; [50] then is the primary orientation/dip of clast, is the secondary and is the tertiary, in terms of strength. The clast orientation is defined as the direction of the eigenvector, on a compass rose of 360° .
The eigenvalues are real. The eigenvectors of A −1 are the same as the eigenvectors of A. Eigenvectors are only defined up to a multiplicative constant. That is, if Av = λv then cv is also an eigenvector for any scalar c ≠ 0. In particular, −v and e iθ v (for any θ) are also eigenvectors.
The eigendecomposition (or spectral decomposition) of a diagonalizable matrix is a decomposition of a diagonalizable matrix into a specific canonical form whereby the matrix is represented in terms of its eigenvalues and eigenvectors. The spectral radius of a square matrix is the largest absolute value of
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
The eigenvalues and eigenvectors are ordered and paired. The jth eigenvalue corresponds to the jth eigenvector. Matrix V denotes the matrix of right eigenvectors (as opposed to left eigenvectors). In general, the matrix of right eigenvectors need not be the (conjugate) transpose of the matrix of left eigenvectors. Rearrange the eigenvectors and ...
In the special case of being a normal matrix, and thus also square, the spectral theorem ensures that it can be unitarily diagonalized using a basis of eigenvectors, and thus decomposed as = for some unitary matrix and diagonal matrix with complex elements along the diagonal.
In linear algebra, eigenvalues and eigenvectors play a fundamental role, since, given a linear transformation, an eigenvector is a vector whose direction is not changed by the transformation, and the corresponding eigenvalue is the measure of the resulting change of magnitude of the vector.
In linear algebra, a defective matrix is a square matrix that does not have a complete basis of eigenvectors, and is therefore not diagonalizable. In particular, an n × n {\displaystyle n\times n} matrix is defective if and only if it does not have n {\displaystyle n} linearly independent eigenvectors. [ 1 ]