Search results
Results from the WOW.Com Content Network
In econometrics and statistics, the generalized method of moments (GMM) is a generic method for estimating parameters in statistical models.Usually it is applied in the context of semiparametric models, where the parameter of interest is finite-dimensional, whereas the full shape of the data's distribution function may not be known, and therefore maximum likelihood estimation is not applicable.
An example application of the method of moments is to estimate polynomial probability density distributions. In this case, an approximating polynomial of order is defined on an interval [,]. The method of moments then yields a system of equations, whose solution involves the inversion of a Hankel matrix. [2]
To estimate parameters of a conditional moment model, the statistician can derive an expectation function (defining "moment conditions") and use the generalized method of moments (GMM). However, there are infinitely many moment conditions that can be generated from a single model; optimal instruments provide the most efficient moment conditions.
In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated.This can be thought of as a generalisation of many classical methods—the method of moments, least squares, and maximum likelihood—as well as some recent methods like M-estimators.
In econometrics, the Arellano–Bond estimator is a generalized method of moments estimator used to estimate dynamic models of panel data.It was proposed in 1991 by Manuel Arellano and Stephen Bond, [1] based on the earlier work by Alok Bhargava and John Denis Sargan in 1983, for addressing certain endogeneity problems. [2]
The method of moments (MoM), also known as the moment method and method of weighted residuals, [1] is a numerical method in computational electromagnetics. It is used in computer programs that simulate the interaction of electromagnetic fields such as radio waves with matter, for example antenna simulation programs like NEC that calculate the ...
In econometrics, the method of simulated moments (MSM) (also called simulated method of moments [1]) is a structural estimation technique introduced by Daniel McFadden. [2] It extends the generalized method of moments to cases where theoretical moment functions cannot be evaluated directly, such as when moment functions involve high-dimensional integrals.
Hansen is best known as the developer of the econometric technique generalized method of moments (GMM) and has written and co-authored papers applying GMM to analyze economic models in numerous fields including labor economics, international finance, finance and macroeconomics. This method has been widely adopted in economics and other fields ...