Search results
Results from the WOW.Com Content Network
Marine cloud brightening also known as marine cloud seeding and marine cloud engineering is a proposed solar radiation management technique that would make clouds brighter, reflecting a small fraction of incoming sunlight back into space in order to offset global warming.
The droplet concentration of a cloud is the number of water droplets in a volume of cloud, typically a cubic centimeter (Wallace, 2006). The formula for the droplet concentration is as follows. = / In this equation, N is the total number of water droplets in the volume, and V is the total volume of the cloud being measured.
The nucleation process of water droplets/ice micro-crystals from water vapor reproduced in the CLOUD experiment and also directly observed in the Earth atmosphere do not only involve ions formation due to cosmic rays but also a range of complex chemical reactions with sulfuric acid, ammonia and organic compounds emitted in the air by human ...
the cloud IR emissivity, with values between 0 and 1, with a global average around 0.7; the effective cloud amount, the cloud amount weighted by the cloud IR emissivity, with a global average of 0.5; the cloud (visible) optical depth varies within a range of 4 and 10. the cloud water path for the liquid and solid (ice) phases of the cloud particles
A typical raindrop is about 2 mm in diameter, a typical cloud droplet is on the order of 0.02 mm, and a typical cloud condensation nucleus is on the order of 0.0001 mm or 0.1 μm or greater in diameter. [1] The number of cloud condensation nuclei in the air can be measured at ranges between around 100 to 1000 per cm 3. [1]
Cloud drops formed on giant sea salt aerosols may grow much more rapidly by condensation that cloud drops formed on small soluble aerosol particles, as giant sea salt cloud drops may remain concentrated solution drops for long times after they are carried into cloud. Such drops may have condensational growth rates more than two times faster ...
The cloud drop effective radius (alternatively cloud effective radius or simply effective radius when in context) is a weighted mean of the size distribution of cloud droplets. [1] The term was defined in 1974 by James E. Hansen and Larry Travis as the ratio of the third to the second moment of a droplet size distribution to aid in the ...
[contradictory] [citation needed] In other words, this excessive cloud seeding from the ship causes the clouds to retain more water. Normally, rain forms when cloud drops coagulate and reach a size at which gravity can pull them to the ground. Yet, in ship tracks, the cloud seeding makes the drops so small that they can no longer easily merge ...