Search results
Results from the WOW.Com Content Network
The laser diode chip removed and placed on the eye of a needle for scale A laser diode with the case cut away. The laser diode chip is the small black chip at the front; a photodiode at the back is used to control output power. SEM (scanning electron microscope) image of a commercial laser diode with its case and window cut away. The anode ...
Semiconductor lasers or laser diodes play an important part in our everyday lives by providing cheap and compact-size lasers. They consist of complex multi-layer structures requiring nanometer scale accuracy and an elaborate design. Their theoretical description is important not only from a fundamental point of view, but also in order to ...
The laser diode rate equations model the electrical and optical performance of a laser diode. This system of ordinary differential equations relates the number or density of photons and charge carriers in the device to the injection current and to device and material parameters such as carrier lifetime, photon lifetime, and the optical gain.
The intensity-modulated optical signal is generated by modulating the amplitude or the current of the light source, typically a laser diode with one or two cavity designs such as Fabry-Perot or distributed feedback (DFB). [5] At the receiver end, direct detection (DD) is used to recover the modulated signal.
The nonlinear theory [2] made it possible to explain a number of experiments some of which could not even be explained (for example, natural linewidth), much less modeled, on the basis of other theoretical models; this suggests that the nonlinear theory developed is a new paradigm of the laser theory.
Current–voltage characteristic of a p–n junction diode showing three regions: breakdown, reverse biased, forward biased. The exponential's "knee" is at V d. The leveling off region which occurs at larger forward currents is not shown. A diode's current–voltage characteristic can be approximated by four operating regions. From lower to ...
A distributed-feedback laser (DFB) is a type of laser diode, quantum-cascade laser or optical-fiber laser where the active region of the device contains a periodically structured element or diffraction grating. The structure builds a one-dimensional interference grating (Bragg scattering), and the grating provides optical feedback for the
A quantum-well laser is a laser diode in which the active region of the device is so narrow that quantum confinement occurs. Laser diodes are formed in compound semiconductor materials that (quite unlike silicon ) are able to emit light efficiently.