enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    In this situation it is generally uncommon to talk about half-life in the first place, but sometimes people will describe the decay in terms of its "first half-life", "second half-life", etc., where the first half-life is defined as the time required for decay from the initial value to 50%, the second half-life is from 50% to 25%, and so on.

  3. Biological half-life - Wikipedia

    en.wikipedia.org/wiki/Biological_half-life

    Absorption half-life 1 h, elimination half-life 12 h. Biological half-life ( elimination half-life , pharmacological half-life ) is the time taken for concentration of a biological substance (such as a medication ) to decrease from its maximum concentration ( C max ) to half of C max in the blood plasma .

  4. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    The time constant τ is the e −1 -life, the time until only 1/e remains, about 36.8%, rather than the 50% in the half-life of a radionuclide. Thus, τ is longer than t 1/2 . The following equation can be shown to be valid:

  5. List of radioactive nuclides by half-life - Wikipedia

    en.wikipedia.org/wiki/List_of_radioactive...

    This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds. [1]

  6. Effective half-life - Wikipedia

    en.wikipedia.org/wiki/Effective_half-life

    Alternatively, since the radioactive decay contributes to the "physical (i.e. radioactive)" half-life, while the metabolic elimination processes determines the "biological" half-life of the radionuclide, the two act as parallel paths for elimination of the radioactivity, the effective half-life could also be represented by the formula: [1] [2]

  7. Iodine-123 - Wikipedia

    en.wikipedia.org/wiki/Iodine-123

    Iodine-123 (123 I) is a radioactive isotope of iodine used in nuclear medicine imaging, including single-photon emission computed tomography (SPECT) or SPECT/CT exams. The isotope's half-life is 13.2232 hours; [1] the decay by electron capture to tellurium-123 emits gamma radiation with a predominant energy of 159 keV (this is the gamma primarily used for imaging).

  8. Potassium-40 - Wikipedia

    en.wikipedia.org/wiki/Potassium-40

    Potassium-40 is the largest source of natural radioactivity in animals including humans. A 70 kg human body contains about 140 g of potassium, hence about 140g × 0.0117% ≈ 16.4 mg of 40 K; [4] whose decay produces about 3850 [5] to 4300 disintegrations per second continuously throughout the life of the person. [Note 2] [6]

  9. Isotopes of neptunium - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_neptunium

    Neptunium-236 has 143 neutrons and a half-life of 154,000 years. It can decay by the following methods: Electron capture: the decay energy is 0.93 MeV and the decay product is uranium-236. This usually decays (with a half-life of 23 million years) to thorium-232. Beta emission: the decay energy is 0.48 MeV and the decay product is plutonium-236.