enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stellar nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Stellar_nucleosynthesis

    Hydrogen fusion (nuclear fusion of four protons to form a helium-4 nucleus [20]) is the dominant process that generates energy in the cores of main-sequence stars. It is also called "hydrogen burning", which should not be confused with the chemical combustion of hydrogen in an oxidizing atmosphere.

  3. Nuclear fusion - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fusion

    Fusion powers stars and produces virtually all elements in a process called nucleosynthesis. The Sun is a main-sequence star, and, as such, generates its energy by nuclear fusion of hydrogen nuclei into helium. In its core, the Sun fuses 620 million metric tons of hydrogen and makes 616 million metric tons of helium each second.

  4. Nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Nucleosynthesis

    Stars fuse light elements to heavier ones in their cores, giving off energy in the process known as stellar nucleosynthesis. Nuclear fusion reactions create many of the lighter elements, up to and including iron and nickel in the most massive stars. Products of stellar nucleosynthesis remain trapped in stellar cores and remnants except if ...

  5. The Hope and Hype of Fusion Energy, Explained - AOL

    www.aol.com/news/hope-hype-fusion-energy...

    Advances in the potential energy source may not be about electricity, at least at first.

  6. Stellar evolution - Wikipedia

    en.wikipedia.org/wiki/Stellar_evolution

    Stellar evolution is the process by which a star changes over the course of its lifetime and how it can lead to the creation of a new star. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the current age of the ...

  7. CNO cycle - Wikipedia

    en.wikipedia.org/wiki/CNO_cycle

    The CNO cycle (for carbon–nitrogen–oxygen; sometimes called Bethe–Weizsäcker cycle after Hans Albrecht Bethe and Carl Friedrich von Weizsäcker) is one of the two known sets of fusion reactions by which stars convert hydrogen to helium, the other being the proton–proton chain reaction (p–p cycle), which is more efficient at the Sun's ...

  8. Stellar core - Wikipedia

    en.wikipedia.org/wiki/Stellar_core

    Below about 1.2 M ☉, energy production in the stellar core is predominantly through the proton–proton chain reaction, a process requiring only hydrogen. For stars above this mass, the energy generation comes increasingly from the CNO cycle, a hydrogen fusion process that uses intermediary atoms of carbon, nitrogen, and oxygen. In the Sun ...

  9. Horizontal branch - Wikipedia

    en.wikipedia.org/wiki/Horizontal_branch

    The horizontal branch (HB) is a stage of stellar evolution that immediately follows the red-giant branch in stars whose masses are similar to the Sun's. Horizontal-branch stars are powered by helium fusion in the core (via the triple-alpha process) and by hydrogen fusion (via the CNO cycle) in a shell surrounding the core