Search results
Results from the WOW.Com Content Network
In mathematics, stability theory addresses the stability of solutions of differential equations and of trajectories of dynamical systems under small perturbations of initial conditions. The heat equation , for example, is a stable partial differential equation because small perturbations of initial data lead to small variations in temperature ...
A dividing line is a property of a theory such that both it and its negation have strong structural consequences; one should imply the models of the theory are chaotic, while the other should yield a positive structure theory. Stability was the first such dividing line in the classification theory program, and since its failure was shown to ...
Pages in category "Stability theory" The following 47 pages are in this category, out of 47 total. This list may not reflect recent changes. ...
Ideas of structural stability were taken up by Stephen Smale and his school in the 1960s in the context of hyperbolic dynamics. Earlier, Marston Morse and Hassler Whitney initiated and René Thom developed a parallel theory of stability for differentiable maps, which forms a key part of singularity theory. Thom envisaged applications of this ...
For several decades the theory of stability sank into complete oblivion. The Russian-Soviet mathematician and mechanician Nikolay Gur'yevich Chetaev working at the Kazan Aviation Institute in the 1930s was the first who realized the incredible magnitude of the discovery made by A. M. Lyapunov.
In the control system theory, the Routh–Hurwitz stability criterion is a mathematical test that is a necessary and sufficient condition for the stability of a linear time-invariant (LTI) dynamical system or control system. A stable system is one whose output signal is bounded; the position, velocity or energy do not increase to infinity as ...
Stable theory, concerned with the notion of stability in model theory; Stability, a property of points in geometric invariant theory; K-Stability, a stability condition for algebraic varieties. Bridgeland stability conditions, a class of stability conditions on elements of a triangulated category. Stability (algebraic geometry)
In control theory, and especially stability theory, a stability criterion establishes when a system is stable. A number of stability criteria are in common use: Circle criterion; Jury stability criterion; Liénard–Chipart criterion; Nyquist stability criterion; Routh–Hurwitz stability criterion; Vakhitov–Kolokolov stability criterion