enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. External memory graph traversal - Wikipedia

    en.wikipedia.org/.../External_memory_graph_traversal

    Graph traversal is a subroutine in most graph algorithms. The goal of a graph traversal algorithm is to visit (and / or process) every node of a graph. Graph traversal algorithms, like breadth-first search and depth-first search, are analyzed using the von Neumann model, which assumes uniform memory access cost. This view neglects the fact ...

  3. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    It is also possible to use depth-first search to linearly order the vertices of a graph or tree. There are four possible ways of doing this: A preordering is a list of the vertices in the order that they were first visited by the depth-first search algorithm. This is a compact and natural way of describing the progress of the search, as was ...

  4. Adjacency list - Wikipedia

    en.wikipedia.org/wiki/Adjacency_list

    An adjacency list representation for a graph associates each vertex in the graph with the collection of its neighbouring vertices or edges. There are many variations of this basic idea, differing in the details of how they implement the association between vertices and collections, in how they implement the collections, in whether they include both vertices and edges or only vertices as first ...

  5. Graph traversal - Wikipedia

    en.wikipedia.org/wiki/Graph_traversal

    A depth-first search (DFS) is an algorithm for traversing a finite graph. DFS visits the child vertices before visiting the sibling vertices; that is, it traverses the depth of any particular path before exploring its breadth. A stack (often the program's call stack via recursion) is generally used when implementing the algorithm.

  6. Kosaraju's algorithm - Wikipedia

    en.wikipedia.org/wiki/Kosaraju's_algorithm

    Provided the graph is described using an adjacency list, Kosaraju's algorithm performs two complete traversals of the graph and so runs in Θ(V+E) (linear) time, which is asymptotically optimal because there is a matching lower bound (any algorithm must examine all vertices and edges).

  7. Tarjan's strongly connected components algorithm - Wikipedia

    en.wikipedia.org/wiki/Tarjan's_strongly_connected...

    The basic idea of the algorithm is this: a depth-first search (DFS) begins from an arbitrary start node (and subsequent depth-first searches are conducted on any nodes that have not yet been found). As usual with depth-first search, the search visits every node of the graph exactly once, refusing to revisit any node that has already been visited.

  8. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    In depth-first search (DFS), the search tree is deepened as much as possible before going to the next sibling. To traverse binary trees with depth-first search, perform the following operations at each node: [3] [4] If the current node is empty then return. Execute the following three operations in a certain order: [5] N: Visit the current node.

  9. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    Dijkstra's algorithm, as another example of a uniform-cost search algorithm, can be viewed as a special case of A* where ⁠ = ⁠ for all x. [12] [13] General depth-first search can be implemented using A* by considering that there is a global counter C initialized with a very large value.