Search results
Results from the WOW.Com Content Network
Natural language processing (NLP) is a subfield of computer science and especially artificial intelligence.It is primarily concerned with providing computers with the ability to process data encoded in natural language and is thus closely related to information retrieval, knowledge representation and computational linguistics, a subfield of linguistics.
Natural-language programming (NLP) is an ontology-assisted way of programming in terms of natural-language sentences, e.g. English. [1] A structured document with Content, sections and subsections for explanations of sentences forms a NLP document, which is actually a computer program. Natural language programming is not to be mixed up with ...
Prompt engineering is the process of structuring an instruction that can be interpreted and understood by a generative artificial intelligence (AI) model. [1] [2]A prompt is natural language text describing the task that an AI should perform. [3]
Natural language generation (NLG) is a software process that produces natural language output. A widely-cited survey of NLG methods describes NLG as "the subfield of artificial intelligence and computational linguistics that is concerned with the construction of computer systems that can produce understandable texts in English or other human languages from some underlying non-linguistic ...
Machine learning – subfield of computer science that examines pattern recognition and computational learning theory in artificial intelligence. There are three broad approaches to machine learning. Supervised learning occurs when the machine is given example inputs and outputs by a teacher so that it can learn a rule that maps inputs to outputs.
Natural language understanding (NLU) or natural language interpretation (NLI) [1] is a subset of natural language processing in artificial intelligence that deals with machine reading comprehension. NLU has been considered an AI-hard problem. [2]
For example, when confronted with a question of the form 'which U.S. state has the highest income tax?', conventional search engines ignore the question and instead search on the keywords 'state', 'income' and 'tax'. Natural-language search, on the other hand, attempts to use natural-language processing to understand the nature of the question ...
It is notable for its dramatic improvement over previous state-of-the-art models, and as an early example of a large language model. As of 2020, BERT is a ubiquitous baseline in natural language processing (NLP) experiments. [3] BERT is trained by masked token prediction and next sentence prediction.