enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    lcm(m, n) (least common multiple of m and n) is the product of all prime factors of m or n (with the largest multiplicity for m or n). gcd(m, n) × lcm(m, n) = m × n. Finding the prime factors is often harder than computing gcd and lcm using other algorithms which do not require known prime factorization.

  3. 49 (number) - Wikipedia

    en.wikipedia.org/wiki/49_(number)

    49 and 94 are the only numbers below 100 whose all permutations are composites but they are not multiples of 3, repdigits or numbers which only have digits 0, 2, 4, 5, 6 and 8, even excluding the trivial one digit terms. 49 = 7^2 and 94 = 2 * 47 The number of prime knots with 9 crossings is 49. [3]

  4. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    2.49 Pythagorean primes. 2.50 ... write the prime factorization of n in base 10 and concatenate the factors; iterate until a prime is reached. 2, 3, 211, 5, 23, 7 ...

  5. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem. To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division : checking if the number is divisible by prime numbers 2 ...

  6. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    The same prime factor may occur more than once; this example has two copies of the prime factor When a prime occurs multiple times, exponentiation can be used to group together multiple copies of the same prime number: for example, in the second way of writing the product above, 5 2 {\displaystyle 5^{2}} denotes the square or second power of 5 ...

  7. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    The requirement that the factors be prime is necessary: factorizations containing composite numbers may not be unique (for example, = =). This theorem is one of the main reasons why 1 is not considered a prime number : if 1 were prime, then factorization into primes would not be unique; for example, 2 = 2 ⋅ 1 = 2 ⋅ 1 ⋅ 1 ...

  8. Table of Gaussian integer factorizations - Wikipedia

    en.wikipedia.org/wiki/Table_of_Gaussian_Integer...

    The article is a table of Gaussian Integers x + iy followed either by an explicit factorization or followed by the label (p) if the integer is a Gaussian prime. The factorizations take the form of an optional unit multiplied by integer powers of Gaussian primes. Note that there are rational primes which are not Gaussian primes.

  9. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The integers and the polynomials over a field share the property of unique factorization, that is, every nonzero element may be factored into a product of an invertible element (a unit, ±1 in the case of integers) and a product of irreducible elements (prime numbers, in the case of integers), and this factorization is unique up to rearranging ...