Search results
Results from the WOW.Com Content Network
The angle bisector theorem is commonly used when the angle bisectors and side lengths are known. It can be used in a calculation or in a proof. An immediate consequence of the theorem is that the angle bisector of the vertex angle of an isosceles triangle will also bisect the opposite side.
Then one of the alternate angles is an exterior angle equal to the other angle which is an opposite interior angle in the triangle. This contradicts Proposition 16 which states that an exterior angle of a triangle is always greater than the opposite interior angles. [5]: 307 [3]: Art. 88
The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles.In general, the interior angle sum in degrees of any closed polygon, including crossed (self-intersecting) ones, is then given by 180(n–2k)°, where n is the number of vertices, and the strictly positive integer k is the number of total (360 ...
In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, = = =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.
If the internal bisector of angle A in triangle ABC has length and if this bisector divides the side opposite A into segments of lengths m and n, then [3]: p.70 + = where b and c are the side lengths opposite vertices B and C; and the side opposite A is divided in the proportion b:c.
An exterior angle of a triangle is an angle that is a linear pair (and hence supplementary) to an interior angle. The measure of an exterior angle of a triangle is equal to the sum of the measures of the two interior angles that are not adjacent to it; this is the exterior angle theorem. [34]
Two sides and an angle not included between them (SSA), if the side length adjacent to the angle is shorter than the other side length. A side and the two angles adjacent to it (ASA) A side, the angle opposite to it and an angle adjacent to it (AAS). For all cases in the plane, at least one of the side lengths must be specified.
Ceva's theorem is a theorem of affine geometry, in the sense that it may be stated and proved without using the concepts of angles, areas, and lengths (except for the ratio of the lengths of two line segments that are collinear). It is therefore true for triangles in any affine plane over any field.