enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stability theory - Wikipedia

    en.wikipedia.org/wiki/Stability_theory

    Stability diagram classifying Poincaré maps of linear autonomous system ′ =, as stable or unstable according to their features. Stability generally increases to the left of the diagram. [ 1 ] Some sink, source or node are equilibrium points .

  3. Lyapunov stability - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_stability

    More strongly, if is Lyapunov stable and all solutions that start out near converge to , then is said to be asymptotically stable (see asymptotic analysis). The notion of exponential stability guarantees a minimal rate of decay, i.e., an estimate of how quickly the solutions converge.

  4. Lyapunov equation - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_equation

    The Lyapunov equation, named after the Russian mathematician Aleksandr Lyapunov, is a matrix equation used in the stability analysis of linear dynamical systems. [1] [2]In particular, the discrete-time Lyapunov equation (also known as Stein equation) for is

  5. Exponential stability - Wikipedia

    en.wikipedia.org/wiki/Exponential_stability

    An exponentially stable LTI system is one that will not "blow up" (i.e., give an unbounded output) when given a finite input or non-zero initial condition. Moreover, if the system is given a fixed, finite input (i.e., a step ), then any resulting oscillations in the output will decay at an exponential rate , and the output will tend ...

  6. Nyquist stability criterion - Wikipedia

    en.wikipedia.org/wiki/Nyquist_stability_criterion

    The Nyquist plot for () = + + with s = jω.. In control theory and stability theory, the Nyquist stability criterion or Strecker–Nyquist stability criterion, independently discovered by the German electrical engineer Felix Strecker [] at Siemens in 1930 [1] [2] [3] and the Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratories in 1932, [4] is a graphical technique ...

  7. Stable polynomial - Wikipedia

    en.wikipedia.org/wiki/Stable_polynomial

    A linear system is BIBO stable if its characteristic polynomial is stable. The denominator is required to be Hurwitz stable if the system is in continuous-time and Schur stable if it is in discrete-time. In practice, stability is determined by applying any one of several stability criteria.

  8. Bistritz stability criterion - Wikipedia

    en.wikipedia.org/wiki/Bistritz_stability_criterion

    It has been also recognized to be more efficient than previously available stability tests for discrete systems like the Schur–Cohn and the Jury test. [4] In the following, the focus is only on how to test stability of a real polynomial. However, as long as the basic recursion needed to test stability remains valid, ZL rules are also brought.

  9. Routh–Hurwitz stability criterion - Wikipedia

    en.wikipedia.org/wiki/Routh–Hurwitz_stability...

    In the control system theory, the Routh–Hurwitz stability criterion is a mathematical test that is a necessary and sufficient condition for the stability of a linear time-invariant (LTI) dynamical system or control system. A stable system is one whose output signal is bounded; the position, velocity or energy do not increase to infinity as ...