Search results
Results from the WOW.Com Content Network
In concentric contraction, muscle tension is sufficient to overcome the load, and the muscle shortens as it contracts. [8] This occurs when the force generated by the muscle exceeds the load opposing its contraction. During a concentric contraction, a muscle is stimulated to contract according to the sliding filament theory. This occurs ...
It's one of the three types of muscle contractions (eccentric, concentric, and isometric)—and it’s often the contraction you’re most likely to forget about. You know concentric muscle ...
An induction shock produces a contraction or fails to do so according to its strength; if it does so at all, it produces the greatest contraction that can be produced by any strength of stimulus in the condition of the muscle at the time. This principle was later found to be present in skeletal muscle by Keith Lucas in 1909. [1]
In the depth jump, the athlete experiences a shock on landing in which the hip, knee, and ankle extensor muscles undergo a powerful eccentric contraction. For the muscles to respond explosively, the eccentric contraction is then quickly switched to the isometric (when the downward movement stops) and then the concentric contraction, in a ...
The increased performance benefit associated with muscle contractions that take place during SSCs has been the focus of much research in order to determine the true nature of this enhancement. At present, there is some debate as to where and how this performance enhancement takes place.
There are two types of isotonic contractions: (1) concentric and (2) eccentric. In a concentric contraction, the muscle tension rises to meet the resistance, then remains the same as the muscle shortens. In eccentric, the muscle lengthens due to the resistance being greater than the force the muscle is producing. [citation needed]
It is typically used to describe the contraction properties of pennate muscles. [1] It is not the same as the anatomical cross-sectional area (ACSA), which is the area of the crossection of a muscle perpendicular to its longitudinal axis. In a non-pennate muscle the fibers are parallel to the longitudinal axis, and therefore PCSA and ACSA coincide.
To elicit muscle contraction, the muscle is stimulated by a series of electrical pulses delivered by an electrode to stimulate either the motor nerve or the muscle tissue itself. Simultaneously, a computer-controlled servo motor in the testing apparatus oscillates the muscle while measuring the force generated by the stimulated muscle.