Search results
Results from the WOW.Com Content Network
If the number of errors within a code word exceeds the error-correcting code's capability, it fails to recover the original code word. Interleaving alleviates this problem by shuffling source symbols across several code words, thereby creating a more uniform distribution of errors. [ 21 ]
The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay, contains chapters on elementary error-correcting codes; on the theoretical limits of error-correction; and on the latest state-of-the-art error-correcting codes, including low-density parity-check codes, turbo codes, and fountain codes.
Serial concatenated convolutional codes; Shaping codes; Slepian–Wolf coding; Snake-in-the-box; Soft-decision decoder; Soft-in soft-out decoder; Sparse graph code; Srivastava code; Stop-and-wait ARQ; Summation check
Proof. We need to prove that if you add a burst of length to a codeword (i.e. to a polynomial that is divisible by ()), then the result is not going to be a codeword (i.e. the corresponding polynomial is not divisible by ()).
As mentioned above, there are a vast number of error-correcting codes that are actually block codes. The first error-correcting code was the Hamming(7,4) code, developed by Richard W. Hamming in 1950. This code transforms a message consisting of 4 bits into a codeword of 7 bits by adding 3 parity bits. Hence this code is a block code.
Chapter 5 studies cyclic codes and Chapter 6 studies a special case of cyclic codes, the quadratic residue codes. Chapter 7 returns to BCH codes. [1] [6] After these discussions of specific codes, the next chapter concerns enumerator polynomials, including the MacWilliams identities, Pless's own power moment identities, and the Gleason ...
The distance d was usually understood to limit the error-correction capability to ⌊(d−1) / 2⌋. The Reed–Solomon code achieves this bound with equality, and can thus correct up to ⌊(n−k) / 2⌋ errors. However, this error-correction bound is not exact.
The two-dimensional parity-check code, usually called the optimal rectangular code, is the most popular form of multidimensional parity-check code. Assume that the goal is to transmit the four-digit message "1234", using a two-dimensional parity scheme.