Search results
Results from the WOW.Com Content Network
A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.
If = (), [,] is the parametric representation of a regular curve in the plane with its curvature nowhere 0 and () its curvature radius and () the unit normal pointing to the curvature center, then = + () describes the evolute of the given curve.
2 Examples. 3 Extension. 4 See also. 5 Notes. 6 References. Toggle the table of contents. Clairaut's equation. ... whose graph is the envelope of the graphs of the ...
For example, applying a YΔ-transformation to a 3-vertex of a planar graph, or a ΔY-transformation to a triangular face of a planar graph, results again in a planar graph. [1] This was used in the original proof of Steinitz's theorem , showing that every 3-connected planar graph is the edge graph of a polyhedron .
For example, to study the equations of ellipses and hyperbolas, the foci are usually located on one of the axes and are situated symmetrically with respect to the origin. If the curve (hyperbola, parabola , ellipse, etc.) is not situated conveniently with respect to the axes, the coordinate system should be changed to place the curve at a ...
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
Geometrically, the graph of v(x) is everywhere tangent to the graph of some member of the family u(x;a). Since the differential equation is first order, it only puts a condition on the tangent plane to the graph, so that any function everywhere tangent to a solution must also be a solution.
In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...