enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Banach space - Wikipedia

    en.wikipedia.org/wiki/Banach_space

    In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space.Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

  3. Direct method in the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Direct_method_in_the...

    The direct method may often be applied with success when the space is a subset of a separable reflexive Banach space. In this case the sequential Banach–Alaoglu theorem implies that any bounded sequence ( u n ) {\displaystyle (u_{n})} in V {\displaystyle V} has a subsequence that converges to some u 0 {\displaystyle u_{0}} in W {\displaystyle ...

  4. Banach algebra - Wikipedia

    en.wikipedia.org/wiki/Banach_algebra

    In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm.

  5. List of Banach spaces - Wikipedia

    en.wikipedia.org/wiki/List_of_Banach_spaces

    Tsirelson space, a reflexive Banach space in which neither nor can be embedded. W.T. Gowers construction of a space X {\displaystyle X} that is isomorphic to X ⊕ X ⊕ X {\displaystyle X\oplus X\oplus X} but not X ⊕ X {\displaystyle X\oplus X} serves as a counterexample for weakening the premises of the Schroeder–Bernstein theorem [ 1 ]

  6. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    In calculus, the product rule (or Leibniz rule [1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions.For two functions, it may be stated in Lagrange's notation as () ′ = ′ + ′ or in Leibniz's notation as () = +.

  7. Uniform boundedness principle - Wikipedia

    en.wikipedia.org/wiki/Uniform_boundedness_principle

    The first inequality (that is, ‖ ‖ < for all ) states that the functionals in are pointwise bounded while the second states that they are uniformly bounded. The second supremum always equals ‖ ‖ (,) = ‖ ‖, ‖ ‖ and if is not the trivial vector space (or if the supremum is taken over [,] rather than [,]) then closed unit ball can be replaced with the unit sphere

  8. ba space - Wikipedia

    en.wikipedia.org/wiki/Ba_space

    There is an obvious algebraic duality between the vector space of all finitely additive measures σ on Σ and the vector space of simple functions (() = ()). It is easy to check that the linear form induced by σ is continuous in the sup-norm if σ is bounded, and the result follows since a linear form on the dense subspace of simple functions ...

  9. Banach–Mazur theorem - Wikipedia

    en.wikipedia.org/wiki/Banach–Mazur_theorem

    On the other hand, the theorem tells us that C 0 ([0, 1], R) is a "really big" space, big enough to contain every possible separable Banach space. Non-separable Banach spaces cannot embed isometrically in the separable space C 0 ([0, 1], R), but for every Banach space X, one can find a compact Hausdorff space K and an isometric linear embedding ...