Search results
Results from the WOW.Com Content Network
Let (,,) be a measure space, and be a Banach space.The Bochner integral of a function : is defined in much the same way as the Lebesgue integral. First, define a simple function to be any finite sum of the form = = (), where the are disjoint members of the -algebra , the are distinct elements of , and χ E is the characteristic function of .
In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space.Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.
Tsirelson space, a reflexive Banach space in which neither nor can be embedded. W.T. Gowers construction of a space X {\displaystyle X} that is isomorphic to X ⊕ X ⊕ X {\displaystyle X\oplus X\oplus X} but not X ⊕ X {\displaystyle X\oplus X} serves as a counterexample for weakening the premises of the Schroeder–Bernstein theorem [ 1 ]
In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm.
It can be shown that square integrable functions form a complete metric space under the metric induced by the inner product defined above. A complete metric space is also called a Cauchy space, because sequences in such metric spaces converge if and only if they are Cauchy. A space that is complete under the metric induced by a norm is a Banach ...
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space [1] [2]) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar , often denoted with angle brackets such as in a , b {\displaystyle \langle a,b\rangle } .
The Riesz–Fischer theorem also applies in a more general setting. Let R be an inner product space consisting of functions (for example, measurable functions on the line, analytic functions in the unit disc; in old literature, sometimes called Euclidean Space), and let {} be an orthonormal system in R (e.g. Fourier basis, Hermite or Laguerre polynomials, etc. – see orthogonal polynomials ...
In mathematics, Maharam's theorem is a deep result about the decomposability of measure spaces, which plays an important role in the theory of Banach spaces.In brief, it states that every complete measure space is decomposable into "non-atomic parts" (copies of products of the unit interval [0,1] on the reals), and "purely atomic parts," using the counting measure on some discrete space. [1]