Search results
Results from the WOW.Com Content Network
The notations sin −1 (x), cos −1 (x), tan −1 (x), etc., as introduced by John Herschel in 1813, [7] [8] are often used as well in English-language sources, [1] much more than the also established sin [−1] (x), cos [−1] (x), tan [−1] (x) – conventions consistent with the notation of an inverse function, that is useful (for example ...
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
In mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective , and if it exists, is denoted by f − 1 . {\displaystyle f^{-1}.}
The sign of the square root needs to be chosen properly—note that if 2 π is added to θ, the quantities inside the square roots are unchanged, but the left-hand-sides of the equations change sign. Therefore, the correct sign to use depends on the value of θ. For the tan function, the equation is:
The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies. [2] The Greeks focused on the calculation of chords, while mathematicians in India created the earliest-known tables of values for trigonometric ratios (also called trigonometric functions) such as sine. [3]
Tan-1, TAN-1, tan-1, or tan −1 may refer to: tan −1 y = tan −1 ( x ), sometimes interpreted as arctan( x ) or arctangent of x , the compositional inverse of the trigonometric function tangent (see below for ambiguity)
Mādhava's work was unknown in Europe, and the arctangent series was independently rediscovered by James Gregory in 1671 and by Gottfried Leibniz in 1673. [2] In recent literature the arctangent series is sometimes called the Mādhava–Gregory series to recognize Mādhava's priority (see also Mādhava series). [3]
The following outline is provided as an overview of and topical guide to trigonometry: . Trigonometry – branch of mathematics that studies the relationships between the sides and the angles in triangles.