Search results
Results from the WOW.Com Content Network
Markov's principle (also known as the Leningrad principle [1]), named after Andrey Markov Jr, is a conditional existence statement for which there are many equivalent formulations, as discussed below. The principle is logically valid classically, but not in intuitionistic constructive mathematics. However, many particular instances of it are ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
The term Markov assumption is used to describe a model where the Markov property is assumed to hold, such as a hidden Markov model. A Markov random field extends this property to two or more dimensions or to random variables defined for an interconnected network of items. [1] An example of a model for such a field is the Ising model.
In probability theory, Markov's inequality gives an upper bound on the probability that a non-negative random variable is greater than or equal to some positive constant. Markov's inequality is tight in the sense that for each chosen positive constant, there exists a random variable such that the inequality is in fact an equality.
In this context, the Markov property indicates that the distribution for this variable depends only on the distribution of a previous state. An example use of a Markov chain is Markov chain Monte Carlo, which uses the Markov property to prove that a particular method for performing a random walk will sample from the joint distribution.
Every adapted right continuous Feller process on a filtered probability space (,, ()) satisfies the strong Markov property with respect to the filtration (+), i.e., for each (+)-stopping time, conditioned on the event {<}, we have that for each , + is independent of + given .
Markov chains and continuous-time Markov processes are useful in chemistry when physical systems closely approximate the Markov property. For example, imagine a large number n of molecules in solution in state A, each of which can undergo a chemical reaction to state B with a certain average rate.
In the presence of Markov's principle, the syntactical restrictions may be somewhat loosened. [ 1 ] When considering the domain of all numbers (e.g. when taking ψ ( x ) {\displaystyle \psi (x)} to be the trivial x = x {\displaystyle x=x} ), the above reduces to the previous form of Church's thesis.