enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of moments of inertia - Wikipedia

    en.wikipedia.org/wiki/List_of_moments_of_inertia

    The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia, and sometimes as the angular mass.

  3. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    The portable gravimeter developed in 1890 by Thomas C. Mendenhall provided the most accurate relative measurements of the local gravitational field of the Earth. A compound pendulum is a body formed from an assembly of particles of continuous shape that rotates rigidly around a pivot. Its moment of inertia is the sum of the moments of inertia ...

  4. Darwin–Radau equation - Wikipedia

    en.wikipedia.org/wiki/Darwin–Radau_equation

    In astrophysics, the Darwin–Radau equation (named after Rodolphe Radau and Charles Galton Darwin) gives an approximate relation between the moment of inertia factor of a planetary body and its rotational speed and shape. The moment of inertia factor is directly related to the largest principal moment of inertia, C.

  5. Moment of inertia factor - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia_factor

    The Sun has by far the lowest moment of inertia factor value among Solar System bodies; it has by far the highest central density (162 g/cm 3, [3] [note 3] compared to ~13 for Earth [4] [5]) and a relatively low average density (1.41 g/cm 3 versus 5.5 for Earth).

  6. Mean radius (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Mean_radius_(astronomy)

    For planet Earth, which can be approximated as an oblate spheroid with radii 6 378.1 km and 6 356.8 km, the mean radius is = (( ) ) / = . The equatorial and polar radii of a planet are often denoted r e {\displaystyle r_{e}} and r p {\displaystyle r_{p}} , respectively.

  7. Inertia - Wikipedia

    en.wikipedia.org/wiki/Inertia

    Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics , and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [ 1 ]

  8. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2]

  9. Cavendish experiment - Wikipedia

    en.wikipedia.org/wiki/Cavendish_experiment

    Moment of inertia of torsion balance beam T: s: Period of oscillation of torsion balance g: m s −2: Acceleration of gravity at the surface of the Earth M earth: kg: Mass of the Earth R earth: m: Radius of the Earth earth: kg m −3: Density of the Earth