enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inertia - Wikipedia

    en.wikipedia.org/wiki/Inertia

    Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics , and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [ 1 ]

  3. Moment of inertia factor - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia_factor

    The Sun has by far the lowest moment of inertia factor value among Solar System bodies; it has by far the highest central density (162 g/cm 3, [3] [note 3] compared to ~13 for Earth [4] [5]) and a relatively low average density (1.41 g/cm 3 versus 5.5 for Earth).

  4. Polar motion - Wikipedia

    en.wikipedia.org/wiki/Polar_motion

    ν E = 1.19 is the normalized Euler frequency (in units of reciprocal years), C = 8.04 × 10 37 kg m 2 is the polar moment of inertia of the Earth, A is its mean equatorial moment of inertia, and C − A = 2.61 × 10 35 kg m 2. [2] [7] The observed angle between the figure axis of the Earth F and its angular momentum M is a few hundred ...

  5. List of moments of inertia - Wikipedia

    en.wikipedia.org/wiki/List_of_moments_of_inertia

    The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia, and sometimes as the angular mass.

  6. Darwin–Radau equation - Wikipedia

    en.wikipedia.org/wiki/Darwin–Radau_equation

    In astrophysics, the Darwin–Radau equation (named after Rodolphe Radau and Charles Galton Darwin) gives an approximate relation between the moment of inertia factor of a planetary body and its rotational speed and shape. The moment of inertia factor is directly related to the largest principal moment of inertia, C.

  7. Lamb shift - Wikipedia

    en.wikipedia.org/wiki/Lamb_shift

    The Lamb shift is caused by interactions between the virtual photons created through vacuum energy fluctuations and the electron as it moves around the hydrogen nucleus in each of these two orbitals. The Lamb shift has since played a significant role through vacuum energy fluctuations in theoretical prediction of Hawking radiation from black holes.

  8. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.

  9. Cavendish experiment - Wikipedia

    en.wikipedia.org/wiki/Cavendish_experiment

    Moment of inertia of torsion balance beam T: s: Period of oscillation of torsion balance g: m s −2: Acceleration of gravity at the surface of the Earth M earth: kg: Mass of the Earth R earth: m: Radius of the Earth earth: kg m −3: Density of the Earth