enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Black–Scholes equation - Wikipedia

    en.wikipedia.org/wiki/BlackScholes_equation

    Black and Scholes' insight was that the portfolio represented by the right-hand side is riskless: thus the equation says that the riskless return over any infinitesimal time interval can be expressed as the sum of theta and a term incorporating gamma.

  3. Black–Scholes model - Wikipedia

    en.wikipedia.org/wiki/BlackScholes_model

    Further, the Black–Scholes equation, a partial differential equation that governs the price of the option, enables pricing using numerical methods when an explicit formula is not possible. The Black–Scholes formula has only one parameter that cannot be directly observed in the market: the average future volatility of the underlying asset ...

  4. Vanna–Volga pricing - Wikipedia

    en.wikipedia.org/wiki/Vanna–Volga_pricing

    It consists of adjusting the Black–Scholes theoretical value (BSTV) by the cost of a portfolio which hedges three main risks associated to the volatility of the option: the Vega, the Vanna and the Volga. The Vanna is the sensitivity of the Vega with respect to a change in the spot FX rate:

  5. Finite difference methods for option pricing - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_methods...

    The discrete difference equations may then be solved iteratively to calculate a price for the option. [4] The approach arises since the evolution of the option value can be modelled via a partial differential equation (PDE), as a function of (at least) time and price of underlying; see for example the Black–Scholes PDE. Once in this form, a ...

  6. Black model - Wikipedia

    en.wikipedia.org/wiki/Black_model

    The Black model (sometimes known as the Black-76 model) is a variant of the Black–Scholes option pricing model. Its primary applications are for pricing options on future contracts, bond options, interest rate cap and floors, and swaptions. It was first presented in a paper written by Fischer Black in 1976.

  7. Black's approximation - Wikipedia

    en.wikipedia.org/wiki/Black's_approximation

    In finance, Black's approximation is an approximate method for computing the value of an American call option on a stock paying a single dividend. It was described by Fischer Black in 1975. [1] The Black–Scholes formula (hereinafter, "BS Formula") provides an explicit equation for the value of a call option on a non-dividend paying stock. In ...

  8. Itô's lemma - Wikipedia

    en.wikipedia.org/wiki/Itô's_lemma

    Itô's lemma can be used to derive the Black–Scholes equation for an option. [2] Suppose a stock price follows a geometric Brownian motion given by the stochastic differential equation dS = S(σdB + μ dt). Then, if the value of an option at time t is f(t, S t), Itô's lemma gives

  9. Volatility smile - Wikipedia

    en.wikipedia.org/wiki/Volatility_smile

    A related concept is that of term structure of volatility, which describes how (implied) volatility differs for related options with different maturities. An implied volatility surface is a 3-D plot that plots volatility smile and term structure of volatility in a consolidated three-dimensional surface for all options on a given underlying asset.