Search results
Results from the WOW.Com Content Network
The rotation group is a group under function composition (or equivalently the product of linear transformations). It is a subgroup of the general linear group consisting of all invertible linear transformations of the real 3-space. [2] Furthermore, the rotation group is nonabelian. That is, the order in which rotations are composed makes a ...
This group is isomorphic to A 4, the alternating group on 4 elements, and is the rotation group for a regular tetrahedron. It is a normal subgroup of T d , T h , and the octahedral symmetries. The elements of the group correspond 1-to-2 to the rotations given by the 24 unit Hurwitz quaternions (the " binary tetrahedral group ").
The rotation group is a Lie group of rotations about a fixed point. This (common) fixed point or center is called the center of rotation and is usually identified with the origin. The rotation group is a point stabilizer in a broader group of (orientation-preserving) motions. For a particular rotation: The axis of rotation is a line of its ...
This group is also called the rotation group, generalizing the fact that in dimensions 2 and 3, its elements are the usual rotations around a point (in dimension 2) or a line (in dimension 3). In low dimension, these groups have been widely studied, see SO(2) , SO(3) and SO(4) .
In geometry the rotation group is the group of all rotations about the origin of three-dimensional Euclidean space R 3 under the operation of composition. [1] By definition, a rotation about the origin is a linear transformation that preserves length of vectors (it is an isometry) and preserves orientation (i.e. handedness) of space.
The proper symmetry group is then a subgroup of the special orthogonal group SO(n), and is called the rotation group of the figure. In a discrete symmetry group, the points symmetric to a given point do not accumulate toward a limit point. That is, every orbit of the group (the images of a given point under all group elements) forms a discrete ...
The 5D rotation group SO(5) and all higher rotation groups contain subgroups isomorphic to O(4). Like SO(4), all even-dimensional rotation groups contain isoclinic rotations. But unlike SO(4), in SO(6) and all higher even-dimensional rotation groups any two isoclinic rotations through the same angle are conjugate.
The degree of translation is then added as a subscript showing how far along the axis the translation is, as a portion of the parallel lattice vector. For example, 2 1 is a 180° (twofold) rotation followed by a translation of 1 / 2 of the lattice vector. 3 1 is a 120° (threefold) rotation followed by a translation of 1 / 3 of ...