enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Involutory matrix - Wikipedia

    en.wikipedia.org/wiki/Involutory_matrix

    An involutory matrix which is also symmetric is an orthogonal matrix, and thus represents an isometry (a linear transformation which preserves Euclidean distance). Conversely every orthogonal involutory matrix is symmetric. [3] As a special case of this, every reflection and 180° rotation matrix is involutory.

  3. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    Involutory matrix: A square matrix which is its own inverse, i.e., AA = I. Signature matrices, Householder matrices (Also known as 'reflection matrices' to reflect a point about a plane or line) have this property. Isometric matrix: A matrix that preserves distances, i.e., a matrix that satisfies A * A = I where A * denotes the conjugate ...

  4. Affine involution - Wikipedia

    en.wikipedia.org/wiki/Affine_involution

    If A represents a linear involution, then x→A(x−b)+b is an affine involution. One can check that any affine involution in fact has this form. Geometrically this means that any affine involution can be obtained by taking oblique reflections against any number from 0 through n hyperplanes going through a point b.

  5. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    Any involution is a bijection.. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x ↦ −x), reciprocation (x ↦ 1/x), and complex conjugation (z ↦ z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the ...

  6. Spinors in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Spinors_in_three_dimensions

    Given a unit vector in 3 dimensions, for example (a, b, c), one takes a dot product with the Pauli spin matrices to obtain a spin matrix for spin in the direction of the unit vector. The eigenvectors of that spin matrix are the spinors for spin-1/2 oriented in the direction given by the vector. Example: u = (0.8, -0.6, 0) is a unit vector ...

  7. Signature matrix - Wikipedia

    en.wikipedia.org/wiki/Signature_matrix

    Any such matrix is its own inverse, hence is an involutory matrix. It is consequently a square root of the identity matrix. Note however that not all square roots of the identity are signature matrices. Noting that signature matrices are both symmetric and involutory, they are thus orthogonal.

  8. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    The analog formula to the above generalization of Euler's formula for Pauli matrices, the group element in terms of spin matrices, is tractable, but less simple. [ 7 ] Also useful in the quantum mechanics of multiparticle systems, the general Pauli group G n is defined to consist of all n -fold tensor products of Pauli matrices.

  9. Householder transformation - Wikipedia

    en.wikipedia.org/wiki/Householder_transformation

    The Householder matrix has the following properties: it is Hermitian: =,; it is unitary: =,; hence it is involutory: =.; A Householder matrix has eigenvalues .To see this, notice that if is orthogonal to the vector which was used to create the reflector, then =, i.e., is an eigenvalue of multiplicity , since there are independent vectors orthogonal to .