Ads
related to: basic function in calculus meaningkutasoftware.com has been visited by 10K+ users in the past month
educator.com has been visited by 10K+ users in the past month
freshdiscover.com has been visited by 100K+ users in the past month
Search results
Results from the WOW.Com Content Network
Differential calculus is the study of the definition, properties, and applications of the derivative of a function. The process of finding the derivative is called differentiation. Given a function and a point in the domain, the derivative at that point is a way of encoding the small-scale behavior of the function near that point.
The mathematical definition of an elementary function, or a function in elementary form, is considered in the context of differential algebra. A differential algebra is an algebra with the extra operation of derivation (algebraic version of differentiation).
The application of hyperreal numbers to the foundations of calculus is called nonstandard analysis. This provides a way to define the basic concepts of calculus such as the derivative and integral in terms of infinitesimals, thereby giving a precise meaning to the in the Leibniz notation.
The above definition of a function is essentially that of the founders of calculus, Leibniz, Newton and Euler. However, it cannot be formalized, since there is no mathematical definition of an "assignment". It is only at the end of the 19th century that the first formal definition of a function could be provided, in terms of set theory.
If the function is called f, this relation is denoted y = f (x) (read f of x), the element x is the argument or input of the function, and y is the value of the function, the output, or the image of x by f. [43] The symbol that is used for representing the input is the variable of the function (one often says that f is a function of the ...
Calculus was expanded in the 18th century by Euler with the introduction of the concept of a function and many other results. [40] Presently, "calculus" refers mainly to the elementary part of this theory, and "analysis" is commonly used for advanced parts.
For functions on the real line, one way to define the limit of a function is in terms of the limit of sequences. (This definition is usually attributed to Eduard Heine .) In this setting: lim x → a f ( x ) = L {\displaystyle \lim _{x\to a}f(x)=L} if, and only if, for all sequences x n (with x n not equal to a for all n ) converging to a the ...
In calculus, the differential represents the principal part of the change in a function = with respect to changes in the independent variable. The differential is defined by = ′ (), where ′ is the derivative of f with respect to , and is an additional real variable (so that is a function of and ).
Ads
related to: basic function in calculus meaningkutasoftware.com has been visited by 10K+ users in the past month
educator.com has been visited by 10K+ users in the past month
freshdiscover.com has been visited by 100K+ users in the past month