Search results
Results from the WOW.Com Content Network
If the discriminant is positive, the number of non-real roots is a multiple of 4. That is, there is a nonnegative integer k ≤ n/4 such that there are 2k pairs of complex conjugate roots and n − 4k real roots. If the discriminant is negative, the number of non-real roots is not a multiple of 4.
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
A quadratic equation with real coefficients can have either one or two distinct real roots, or two distinct complex roots. In this case the discriminant determines the number and nature of the roots. In this case the discriminant determines the number and nature of the roots.
The discriminant of K can be referred to as the absolute discriminant of K to distinguish it from the relative discriminant of an extension K/L of number fields. The latter is an ideal in the ring of integers of L , and like the absolute discriminant it indicates which primes are ramified in K / L .
Cardano's result is that if + + = is a cubic equation such that p and q are real numbers such that + is positive (this implies that the discriminant of the equation is negative) then the equation has the real root +, where and are the two numbers + + and +.
Casus irreducibilis occurs when none of the roots are rational and when all three roots are distinct and real; the case of three distinct real roots occurs if and only if q 2 / 4 + p 3 / 27 < 0, in which case Cardano's formula involves first taking the square root of a negative number, which is imaginary, and then taking the ...
Vieta's formulas are frequently used with polynomials with coefficients in any integral domain R.Then, the quotients / belong to the field of fractions of R (and possibly are in R itself if happens to be invertible in R) and the roots are taken in an algebraically closed extension.
If the discriminant is zero the fraction converges to the single root of multiplicity two. If the discriminant is positive the equation has two real roots, and the continued fraction converges to the larger (in absolute value) of these. The rate of convergence depends on the absolute value of the ratio between the two roots: the farther that ...