Search results
Results from the WOW.Com Content Network
The following greedy algorithm, called Earliest deadline first scheduling, does find the optimal solution for unweighted single-interval scheduling: Select the interval, x, with the earliest finishing time. Remove x, and all intervals intersecting x, from the set of candidate intervals. Repeat until the set of candidate intervals is empty.
The activity selection problem is also known as the Interval scheduling maximization problem (ISMP), which is a special type of the more general Interval Scheduling problem. A classic application of this problem is in scheduling a room for multiple competing events, each having its own time requirements (start and end time), and many more arise ...
Longest-processing-time-first (LPT) is a greedy algorithm for job scheduling. The input to the algorithm is a set of jobs, each of which has a specific processing-time. There is also a number m specifying the number of machines that can process the jobs. The LPT algorithm works as follows:
interval order: Each job has an interval [s x,e x) and job is a predecessor of if and only if the end of the interval of is strictly less than the start of the interval for .= In the presence of a precedence relation one might in addition assume time lags. The time lag between two jobs is the amount of time that must be waited after the first ...
This algorithm runs in time O(n). The specific list-scheduling algorithm called Longest Processing Time First (LPT), which sorts the jobs by descending length, is a / / approximation for identical machines. [4]: sec.5 It is also called greedy number partitioning.
Otherwise, disregard the interval. The interval scheduling problem can be viewed as a profit maximization problem, where the number of intervals in the mutually compatible subset is the profit. The charging argument can be used to show that the earliest finish time algorithm is optimal for the interval scheduling problem.
The modified due date scheduling is a scheduling heuristic created in 1982 by Baker and Bertrand, [1] used to solve the NP-hard single machine total-weighted tardiness problem. This problem is centered around reducing the global tardiness of a list of tasks which are characterized by their processing time, due date and weight by re-ordering them.
List scheduling is a greedy algorithm for Identical-machines scheduling.The input to this algorithm is a list of jobs that should be executed on a set of m machines. The list is ordered in a fixed order, which can be determined e.g. by the priority of executing the jobs, or by their order of arrival.