Search results
Results from the WOW.Com Content Network
Scala runs on the Java platform (Java virtual machine) and is compatible with existing Java programs. [15] As Android applications are typically written in Java and translated from Java bytecode into Dalvik bytecode (which may be further translated to native machine code during installation) when packaged, Scala's Java compatibility makes it well-suited to Android development, the more so when ...
On 12 May 2011, Odersky and collaborators launched Typesafe Inc. (renamed Lightbend Inc., February 2016 ()), a company to provide commercial support, training, and services for Scala. [3] He teaches three courses on the Coursera online learning platform: Functional Programming Principles in Scala, Functional Program Design in Scala and ...
Scala Scala, Python No No Yes Yes Yes Yes Caffe: Berkeley Vision and Learning Center 2013 BSD: Yes Linux, macOS, Windows [3] C++: Python, MATLAB, C++: Yes Under development [4] Yes No Yes Yes [5] Yes Yes No ? No [6] Chainer: Preferred Networks 2015 BSD: Yes Linux, macOS: Python: Python: No No Yes No Yes Yes Yes Yes No Yes No [7] Deeplearning4j
Chainer: Fully in Python, production support for CPU, GPU, distributed training. Deeplearning4j: Deep learning in Java and Scala on multi-GPU-enabled Spark. Flux: includes interfaces for RNNs, including GRUs and LSTMs, written in Julia. Keras: High-level API, providing a wrapper to many other deep learning libraries. Microsoft Cognitive Toolkit
Machine learning and data mining often employ the same methods and overlap significantly, but while machine learning focuses on prediction, based on known properties learned from the training data, data mining focuses on the discovery of (previously) unknown properties in the data (this is the analysis step of knowledge discovery in databases).
Spark NLP for Healthcare is a commercial extension of Spark NLP for clinical and biomedical text mining. [10] It provides healthcare-specific annotators, pipelines, models, and embeddings for clinical entity recognition, clinical entity linking, entity normalization, assertion status detection, de-identification, relation extraction, and spell checking and correction.
In machine learning, a neural scaling law is an empirical scaling law that describes how neural network performance changes as key factors are scaled up or down. These factors typically include the number of parameters, training dataset size, [1] [2] and training cost.
Deeplearning4j can be used via multiple API languages including Java, Scala, Python, Clojure and Kotlin. Its Scala API is called ScalNet. [31] Keras serves as its Python API. [32] And its Clojure wrapper is known as DL4CLJ. [33] The core languages performing the large-scale mathematical operations necessary for deep learning are C, C++ and CUDA C.