Search results
Results from the WOW.Com Content Network
A phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids.A type of quasiparticle in physics, [1] a phonon is an excited state in the quantum mechanical quantization of the modes of vibrations for elastic structures of interacting particles.
A phonon laser device. Sound amplification by stimulated emission of radiation (SASER) refers to a device that emits acoustic radiation. [1] It focuses sound waves in a way that they can serve as accurate and high-speed carriers of information in many kinds of applications—similar to uses of laser light.
Room modes are the collection of resonances that exist in a room when the room is excited by an acoustic source such as a loudspeaker. Most rooms have their fundamental resonances in the 20 Hz to 200 Hz region, each frequency being related to one or more of the room's dimensions or a divisor thereof.
The dispersion relation of phonons is also non-trivial and important, being directly related to the acoustic and thermal properties of a material. For most systems, the phonons can be categorized into two main types: those whose bands become zero at the center of the Brillouin zone are called acoustic phonons , since they correspond to ...
Acoustic metamaterials are used to model and research extremely large-scale acoustic phenomena like seismic waves and earthquakes, but also extremely small-scale phenomena like atoms. The latter is possible due to band gap engineering: acoustic metamaterials can be designed such that they exhibit band gaps for phonons, similar to the existence ...
Acoustic Phonon: The charge carrier exchanges energy with an acoustic mode of the vibration of atoms in the crystal lattice. Acoustic Phonons mainly arise from thermal excitation of the crystal lattice. Polar Optical: The charge carrier exchanges energy with one of the polar optical modes of the crystal lattice. These modes are not present in ...
Diagram of a phonon-photon interaction Acoustic phase conjugation can appear in a solid when the sound velocity is modulated by an electromagnetic field. The generation of the conjugate wave can be seen as the decay of a photon into two phonons, as seen on the diagram.
Three of these modes (corresponding to the parallel space) are acoustic phonon modes, while the remaining three are diffusive phason modes. In incommensurately-modulated crystals, phasons may be constructed from a coherent superposition of phonons of the unmodulated parent structure, though this is not possible for quasicrystals. [1]