Search results
Results from the WOW.Com Content Network
The fifth enzyme involved is the shikimate kinase, an enzyme that catalyzes the ATP-dependent phosphorylation of shikimate to form shikimate 3-phosphate (shown in the figure below). [ 1 ] [ 2 ] Shikimate 3-phosphate is then coupled with phosphoenol pyruvate to give 5-enolpyruvylshikimate-3-phosphate via the enzyme 5-enolpyruvylshikimate-3 ...
The shikimate pathway, named after shikimic acid as important intermediate, is a seven-step metabolic route used by bacteria, fungi, algae, parasites, and plants for the biosynthesis of aromatic amino acids (phenylalanine, tyrosine, and tryptophan).
3-Deoxy-D-arabinoheptulosonate 7-phosphate (DAHP) synthase (EC 2.5.1.54) is the first enzyme in a series of metabolic reactions known as the shikimate pathway, which is responsible for the biosynthesis of the amino acids phenylalanine, tyrosine, and tryptophan. Since it is the first enzyme in the shikimate pathway, it controls the amount of ...
Shikimate kinase (EC 2.7.1.71) is an enzyme that catalyzes the ATP-dependent phosphorylation of shikimate to form shikimate 3-phosphate. [1] This reaction is the fifth step of the shikimate pathway, [ 2 ] which is used by plants and bacteria to synthesize the common precursor of aromatic amino acids and secondary metabolites.
In biochemistry, a metabolic pathway is a linked series of chemical reactions occurring within a cell.The reactants, products, and intermediates of an enzymatic reaction are known as metabolites, which are modified by a sequence of chemical reactions catalyzed by enzymes.
The shikimate pathway is a target for herbicides and other non-toxic drugs because the shikimate pathway is not present in humans. Glyphosate, a commonly used herbicide, is an inhibitor of 5-enolpyruvylshikimate 3-phosphate synthase or EPSP synthase, an enzyme in the shikimate pathway. The problem is that this herbicide has been utilized for ...
The formation of a peptide bond requires an input of energy. The two reacting molecules are the alpha amino group of one amino acid and the alpha carboxyl group of the other amino acids. A by-product of this bond formation is the release of water (the amino group donates a proton while the carboxyl group donates a hydroxyl). [2]
Osmoregulation is the active regulation of the osmotic pressure of an organism's body fluids, detected by osmoreceptors, to maintain the homeostasis of the organism's water content; that is, it maintains the fluid balance and the concentration of electrolytes (salts in solution which in this case is represented by body fluid) to keep the body fluids from becoming too diluted or concentrated.