enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynucleotide - Wikipedia

    en.wikipedia.org/wiki/Polynucleotide

    In molecular biology, a polynucleotide (from Ancient Greek πολυς (polys) 'many') is a biopolymer composed of nucleotide monomers that are covalently bonded in a chain. [1] DNA (deoxyribonucleic acid) and RNA (ribonucleic acid) are examples of polynucleotides with distinct biological functions.

  3. RNA - Wikipedia

    en.wikipedia.org/wiki/RNA

    It has sites for amino acid attachment and an anticodon region for codon recognition that binds to a specific sequence on the messenger RNA chain through hydrogen bonding. [32] A diagram of how mRNA is used to create polypeptide chains. Ribosomal RNA (rRNA) is the catalytic component of the ribosomes. The rRNA is the component of the ribosome ...

  4. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    DNA's secondary structure is predominantly determined by base-pairing of the two polynucleotide strands wrapped around each other to form a double helix. Although the two strands are aligned by hydrogen bonds in base pairs, the stronger forces holding the two strands together are stacking interactions between the bases.

  5. Nucleic acid - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid

    Strings of nucleotides are bonded to form spiraling backbones and assembled into chains of bases or base-pairs selected from the five primary, or canonical, nucleobases. RNA usually forms a chain of single bases, whereas DNA forms a chain of base pairs. The bases found in RNA and DNA are: adenine, cytosine, guanine, thymine, and uracil. Thymine ...

  6. Non-canonical base pairing - Wikipedia

    en.wikipedia.org/wiki/Non-canonical_base_pairing

    Non-canonical base pairs are planar hydrogen bonded pairs of nucleobases, having hydrogen bonding patterns which differ from the patterns observed in Watson-Crick base pairs, as in the classic double helical DNA. The structures of polynucleotide strands of both DNA and RNA molecules can be understood in terms of sugar-phosphate backbones ...

  7. Directionality (molecular biology) - Wikipedia

    en.wikipedia.org/wiki/Directionality_(molecular...

    The 3′-untranslated region (3′-UTR) is a region of the DNA which is transcribed into mRNA and becomes the 3′-end of the message, but which does not contain protein coding sequence. Everything between the stop codon and the polyA tail is considered to be 3′-untranslated. The 3′-untranslated region may affect the translation efficiency ...

  8. RNA polymerase - Wikipedia

    en.wikipedia.org/wiki/RNA_polymerase

    It then produces an RNA chain, which is complementary to the template DNA strand. The process of adding nucleotides to the RNA strand is known as elongation; in eukaryotes, RNAP can build chains as long as 2.4 million nucleotides (the full length of the dystrophin gene).

  9. Nucleic acid tertiary structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_tertiary...

    Three DNA conformations are believed to be found in nature, A-DNA, B-DNA, and Z-DNA. The "B" form described by James D. Watson and Francis Crick is believed to predominate in cells. [ 2 ] James D. Watson and Francis Crick described this structure as a double helix with a radius of 10 Å and pitch of 34 Å , making one complete turn about its ...